

April 2001 Revised August 2024

74LCX16543

Low Voltage 16-Bit Registered Transceiver with 5V Tolerant Inputs and Outputs

General Description

The LCX16543 contains sixteen non-inverting transceivers containing two sets of D-type registers for temporary storage of data flowing in either direction. Each byte has separate control inputs which can be shorted together for full 16-bit operation. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent input and output control in either direction of data flow.

The LCX16543 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCX16543 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- 5.2 ns t_{PD} max ($V_{CC} = 3.3V$), 20 $\mu A I_{CC}$ max
- Power down high impedance in this arturutputs
- Supports live insertion/with awa Note
- ±24 mA Output Drive (____ = ^ OV)
- Implements patente now EMI duction circulary
- Latch-up peri mance xce .s 500 inA
- ESD performan
 - Ht 90 / Model > 2000%

1ac. ne Musel > 200V

Note 1. ence the high-impedance state during power up or down, $\overline{\text{OE}}$ rould be all to V_{CC} through a pull-up resistor; the minimum value or the runtor is determined by the curron sourcing applicity of the driver.

Ordering Code:

Order Number	Package N nb	er Package Description
74LCX16543MEA	··^56,	-Lead Shrink Small Crutine Package (SSOP), JEDEC MO-118, 0.300 Wide
74LCX16543MTD	MTC-6	36-Lc ad Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available	Tape and Re Spe	ecify by applending the suffix letter "X" to the ordering code.
Con ectic	ւ 'agrain	Logic Symbol
THIS DE	Tras - 2 5 5 5 6 NO - 4 5 5 6 NO - 4 5 5 6 NO - 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-
	A _B = 15 4 A ₉ = 16 4 A ₁₀ = 17 4 GND = 18 3 A ₁₁ = 19 3 A ₁₂ = 20 3 A ₁₃ = 21 3 V _{CC} = 22 3 A ₁₄ = 23 3 A ₁₅ = 24 GND = 25 3 GRA ₂ = 26 3 IEAS ₂ = 27 3	3 - 0, 2 - 0, 6, 0 - 0,

Pin Descriptions

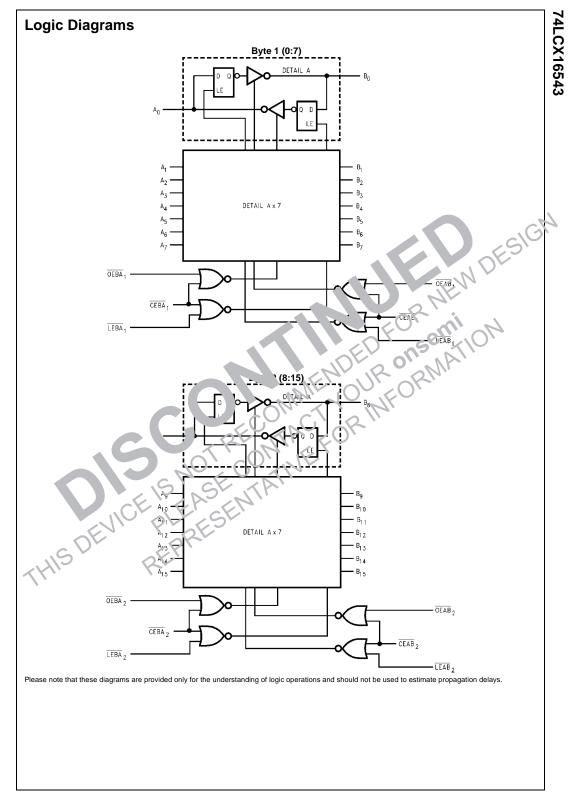
Pin Names	Description
OEAB _n	A-to-B Output Enable Input (Active LOW)
OEBA _n	B-to-A Output Enable Input (Active LOW)
CEAB _n	A-to-B Enable Input (Active LOW)
CEBAn	B-to-A Enable Input (Active LOW)
LEAB _n	A-to-B Latch Enable Input (Active LOW)
LEBAn	B-to-A Latch Enable Input (Active LOW)
A ₀ -A ₁₅	A-to-B Data Inputs or B-to-A 3-STATE Outputs
B ₀ -B ₁₅	B-to-A Data Inputs or A-to-B 3-STATE Outputs

Data I/O Control Table

LLDA	ו וייים	Later Li	iable iliput (Active	3 LOVV)
A ₀ -A ₁	5 A-to-E	B Data Inp	uts or B-to-A 3-S	TATE Outputs
B ₀ –B ₁₅	B-to-A	A Data Inp	uts or A-to-B 3-S	TATE Outputs
able				As a
	Inputs		Latch Status	Output Polers
CEAB _n	LEAB _n	$\overline{\text{OEAB}}_{n}$	(Byte n)	(B ₃
Н	Х	Х	Latched	igh.
Χ	Н	Х	Latche	AL AL
L	L	Х	Trai ,c ~	JOP i
Χ	X	Н	-	'righ Z
L	X	L		Driving
			MD	IR COMP
ontrol is e	same xce,	ısing CEB/	$\overline{\Lambda}_{\rm n}, \overline{\rm LEBA}_{\rm n}$ and $\overline{\rm OEBA}_{\rm n}$	n, cok.
ptio		CON		IM
en n -in	verting tra	insceive s	makes the A-	-to-B latches transparent: a subsequent LOW-

H = HIGH Voltage Level

Functional Description


The LCX16543 contains seen in -inverting transceive s with 3-STATE or juts. The is byte controlled with each byte for tic in tically, but independent or the other. The co. of pins r y be shorted together to obtain. full out era on, the following description applies to eac. byte. I r c...a flow from A to B, for example, the A-to-L Fnah (\overline{CEAE}) input must be LOW in order to enter da. from A A₁ A₁ or take oata from B_C-B₁₅, as indicated in the Data I/O Cont of Table With \overline{CEAB}_n LOW, a LOW signar on the A-to-B Lawh Enable ($\overline{\text{LEAB}}_n$) input

makes the A-to-B latches transparent; a subsequent LOWto-H $^{\prime}$ GH transition of the $\overline{\text{LEAB}}_{n}$ signal puts the A latches in 'ne storage mode and their outputs no longer change with the A inputs. With CEAB_n and OEAB_n both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the \overline{CEBA}_n , \overline{LEBA}_n and OEBA_n inputs.

L = LOW Voltage Level

X = Immaterial

A-to-B data flow shown; B-to-A flow control is e same

Absolute Maximum Ratings(Note 2)

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
V _O	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 3)	, v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	V _O > V _{CC}	IIIA	
I _O	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 4)

Symbol	Parameter	M.	Max	Units
V _{CC}	Supply Voltage	50	3.6	V
	. ta Re ntio.	1.5	3.6	V
V _I	Input Voltage	67	5.5	V
V _O	Output Voltage 'G or Low State	0	V _{CC}	V
	3-STATE	6	5.5	V
I _{OH} /I _{OL}	Output Current $ \sqrt{_{CC}} = 3.0 \text{ / } - 3.6 \text{V} $ $ \sqrt{_{CC}} = 2.7 \text{V} - 2.7 \text{ / } $	50 1	+24	
	$V_{Ci} = 2.7V - 7.7V$	" nD	±12	mA
	$V_{CC} = 2.3V - 2.7V$	2 MII.	±8	
T _A	Free-Air Operating Tempe was	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0 V–2.0V V _{CC} = 3.0V	0	10	ns/V

Note 2: The Absolute Maximum F ings are in vall beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric v ies defined in which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric v ies defined in which life acteristics ables are not quaranteed at the Absolute Maximum Ratings. The "Recommended Operating Cond" in the will delight the conditions for actual device operation.

Note 3: Io Absolute I ximum Ratin. In electrical characteristics ables are not quaranteed at the Absolute Maximum Ratings. The "Recommended Operating Cond" in the conditions for actual device operation.

Note 4: Unused outs will be held filled or LOW. They may not float.

Dr Ele tr. ai Characteristics

Symbo	Farameter	Conditions	V _{CC}	T _A = -40°C	to +85°C	Units	
Symbol	Parameter	Conditions	(V)	Min	Max	Ulits	
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V	
			2.7 – 3.6	2.0		V	
41/	LOW Level Input voltage		2.3 – 2.7		0.7	V	
	4		2.7 – 3.6		0.8	٧	
/он	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3 – 3.6	V _{CC} - 0.2			
		$I_{OH} = -8 \text{ mA}$	2.3	1.8			
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V	
		$I_{OH} = -18 \text{ mA}$	3.0	2.4			
		$I_{OH} = -24 \text{ mA}$	3.0	2.2			
OL.	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2		
		I _{OL} = 8 mA	2.3		0.6		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 16 mA	3.0		0.4		
		I _{OL} = 24 mA	3.0		0.55		
	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 – 3.6		±5.0	μΑ	
OZ	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0		
		$V_I = V_{IH}$ or V_{IL}	2.3 - 3.0		±3.0	μА	
OFF	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μΑ	

DC Electrical Characteristics (Continued)

	Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}$	C to +85°C	Units
Symbol		i didilicici	Conditions		Min	Max	Onico
	I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		20	μА
			$3.6V \le V_1, V_0 \le 5.5V \text{ (Note 5)}$	2.3 – 3.6		±20	μΑ
	ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 – 3.6		500	μΑ

Note 5: Outputs in disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40$ °C to $+85$ °C, $R_L = 500 \Omega$						
Symbol	Parameter	V _{CC} = 3.	3V ± 0.3V	V _{CC} = 2.7V		$\rm V_{CC}=2.5V\pm0.2V$		
Зуппон	Farameter	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	5.2	1.5	6.0	1.5	2	n/ C
t _{PLH}	A_n to B_n or B_n to A_n	1.5	5.2	1.5	6.0	1.5	<u>}</u>	lis
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.5		7.8	ns
t _{PLH}	\overline{LEBA}_{n} to A_{n} or \overline{LEAB}_{n} to B_{n}	1.5	6.5	1.5	7	1.5	7.3	IIS
t _{PZL}	Output Enable Time						1/1/4	
t_{PZH}	\overline{OEBA}_n or \overline{OEAB}_n to A_n or B_n	1.5	6.5	1.5	7.0	1.5	8.5	ns
	$\overline{\text{CEBA}}_n$ or $\overline{\text{CEAB}}_n$ to A_n or B_n	1.5	6.5	- 5		1.5	8.5	
t _{PLZ}	Output Disable Time						10	
t_{PHZ}	OEBA _n or OEAB _n to A _n or B _n	1.5	5	1.	7.0	1.5	7.8	ns
	$\overline{\text{CEBA}}_n$ or $\overline{\text{CEAB}}_n$ to A_n or B_n	1.5	6.	1.5	7.0	, C.S.	7.8	
t _S	Setup Time, HIGH or LOW,	25		2.5		3.0		ns
	Data to LEXX _n			SAL	. 18	-01/		115
t _H	Hold Time, HIGH or LOW,	1.5	10	1.5	70	2.0		ns
	Data to LEXX _n			" \	I'. NY			115
t _W	Pulse Width, Latch Enah	3.0	10,	3.0	2 //	3.5		ns
toshl	Output to Output Skew ote 6)		1.0	٧. ١				ns
toslh		. QV	1.0					115

Note 6: Skew is defin ' as value of the diffe ence between 'he actual pronagation delay for any two separate outputs of the same device. The specification applies to volutions with volutions of the same device. The specification applies to volutions with volutions of the same device. The specification applies to volutions with volutions of the same device. The specification applies to volutions with volutions of the same device. The specification applies to volutions with volutions and volutions of the same device. The specification applies to volutions with volutions and volutions of the same device. The specification applies to volutions with volutions are specification applies to volutions.

Dyna nic & vi shing Characteristics

Symbol	(Paramote)	Conditions	V _{CC} (V)	T _A = 25°C	Units
V _{OLP}	Quiet Cutput Dynamic Peak Vol.	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
,C	SEY.	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLY}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
11.	•	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_I = 0V or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

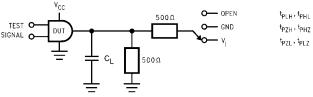
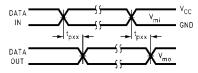
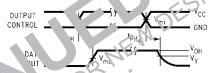
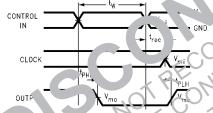
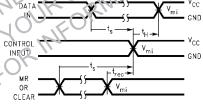
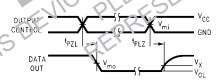




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V
t_{PZH}, t_{PHZ}	GND


Waveform for Inverting and Non-Inverting Functions


STATE Output High Trable and Disable Times for Logic

P paga. n L 'ay. Puls : Width and tree Waveforms

Setup Time, Hold Time and Recovery Time for Logic

3-STATE Output Low Enable and Disable Times for Logic

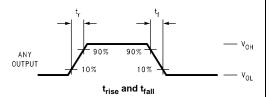
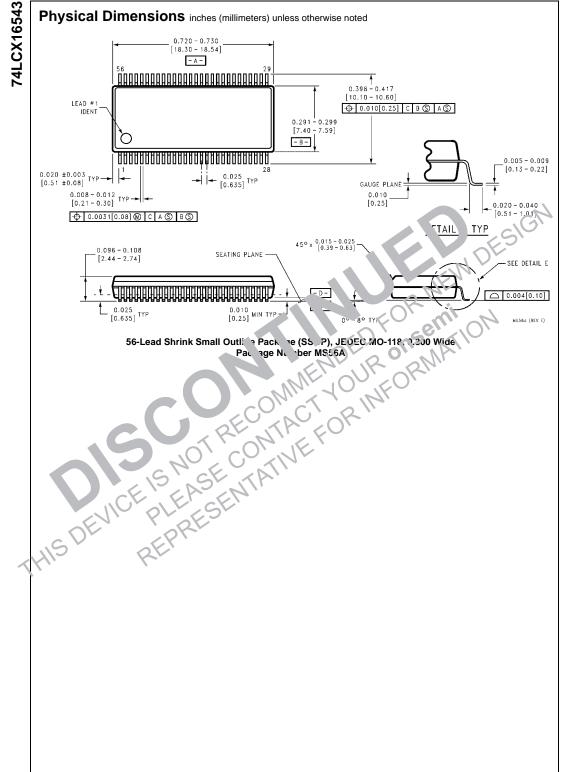
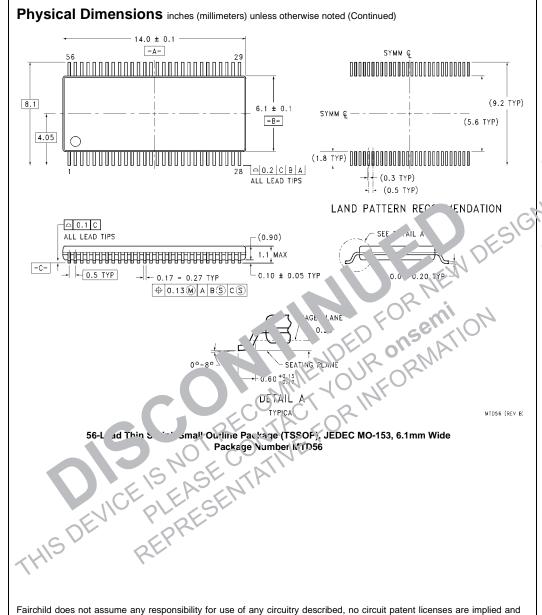




FIGURE 2. Waveforms (Input Characteristics; f =1MHz, $t_r = t_f = 3ns$)

Symbol	V _{cc}					
Cymber	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V			
V _{mi}	1.5V	1.5V	V _{CC} /2			
V _{mo}	1.5V	1.5V	V _{CC} /2			
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V			
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V			

Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative