

JN Semiconductor®

To kara more about Old Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

February 2008

74LVT245, 74LVTH245 Low Voltage Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs

Features

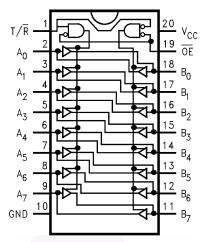
- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH245), also available without bushold feature (74LVT245)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink, -32mA/+64mA
- Latch-up performance exceeds 500mA
- ESD performance:
 - Human-body model > 2000V
 - Machine model > 200V
 - Charged-device model > 100^r

General Description

The LVT245 and LVTH245 cordinates of non-inverting bidirectional buffers with ASI TE out uts and are intended for bus-orient applications, he Transmit/Receive (T/R) input determines the auton of claraflow through the bidirectional anscendent. Transmit (active-HIGH) enable data on arts to B ports; Receive (active-Livial V) tables at a from B ports to A ports. The Output Enable in the HIGH, disables both A and B ports of them in a HIGH. Z condition.

The section external pull-up resistors to hold unused input.

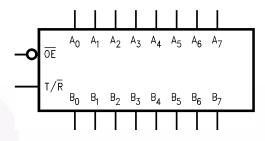
These transceivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V en ironment. The LVT245 and LVTH245 are fabricaled with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

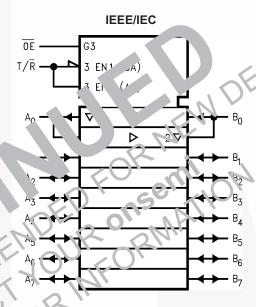

Orderin Inform ion

der I mber	Package Number	Package Description
74L róWM	M20L	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVT245SJ	iM2uD	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74L'(T245MSA	MS 4∠0	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
741.VT245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVTH245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVTH245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74LVTH245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram



Pin Description

Pin Names	Description	
ŌĒ	Output Enable Input	
T/R	Transmit/Receive Input	
A ₀ -A ₇	Side A Inputs or 3-STATE Out	
B ₀ –B ₇	Side B Inputs or 3-ST/- 'tpu	

Logic Symbols

Truth Table

Inp	uts	
ŌĒ	T/R	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	HIGH-Z State

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +4.6V
V _I	DC Input Voltage	–0.5V to +7.0V
Vo	DC Output Voltage	
	Output in 3-STATE	–0.5V to +7.0V
	Output in HIGH or LOW State ⁽¹⁾	-0.5V to +7.0V
I _{IK}	DC Input Diode Current, V _I < GND	_50mA
I _{OK}	DC Output Diode Current, V _O < GND	-50mA
Io	DC Output Current, V _O > V _{CC}	
	Output at HIGH State	64mA
	Output at LOW State	128mA
I _{CC}	DC Supply Current per Supply Pin	±64mA
I _{GND}	DC Ground Current per Ground Pin	±128mA
T _{STG}	Storage Temperature	-65° C tc →150° C

Note:

1. In Absolute Maximum Rating must be of a red.

Recommended Operation Corditions

The Recommended Ope one conditions are pecified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend excess git on or consigning to assolute maximum ratings.

Symb	Parariever	Min	Max	Units
	Signal oltage	2.7	3.6	V
VI	nput Voltage	0	5.5	V
IOH	HIGH Level Output Current		-32	mA
JL	LOV/-Leve! Output Current		64	mA
T _A	Free-Air Cperating 1 mperature	-40	85	°C
Δ+/ ΔV	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

DC Electrical Characteristics

Symbol Parameter V _{CC} (V) Conditions Min. Max. Units					T _A = -40°C	C to +85°C	
Vi _H Input HIGH Voltage 2.7–3.6 V _O ≤ 0.1V or 2.0 V V _{II} Input LOW Voltage 2.7–3.6 V _O ≥ V _{CC} − 0.1V 0.8 V V _{OH} Output HIGH Voltage 2.7–3.6 I _{OH} = −100µA V _{CC} − 0.2 V I _{OH} = −32mA 2.4 3.0 I _{OH} = −32mA 2.0 V V _{OL} Output LOW Voltage 2.7 I _{OL} = 100µA 0.2 V I _{OL} = 24mA 5 3.0 I _{OL} = 32mA 0.5 0.5 I _{OL} = 32mA 0.5 0.5 0.5 0.5 0.5 I _{ICOD} = 24mA 0.5 0.5 0.5 0.5 0.5 0.5 I _I = 64mA 0.5 <td< th=""><th>Symbol</th><th>Parameter</th><th>V_{CC} (V)</th><th>Conditions</th><th>Min.</th><th>Max.</th><th>Units</th></td<>	Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Max.	Units
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IK}	Input Clamp Diode Voltage	2.7	I _I = -18mA		-1.2	V
Voh	V _{IH}	Input HIGH Voltage	2.7–3.6	$V_O \le 0.1V$ or	2.0		V
2.7	V _{IL}	Input LOW Voltage	2.7–3.6	$V_O \ge V_{CC} - 0.1V$		0.8	
3.0 I _{OH} = -3zmA 2.0	V _{OH}	Output HIGH Voltage	2.7–3.6	$I_{OH} = -100 \mu A$	V _{CC} - 0.2		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.7	$I_{OH} = -8mA$	2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.0	I _{OH} = -32mA	2.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OL}	Output LOW Voltage	2.7	$I_{OL} = 100 \mu A$		0.2	V
I _{OL} = 32mA 0.5 I _{OL} = 64mA 0.55 I _{OL} = 2 nV -75 I _{OL} = 3 nV -75 I _{OL} = 1 nV 1 nV I _{OL} =				I _{OL} = 24mA		5	
I _{I(HOLD)} (2) Bushold Input Minimum Drive 3.0 V _I = 0.8V D _I = 2 °V -75 D _I D _I			3.0	I _{OL} = 16mA			/S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				I _{OL} = 32mA		0.5	
I _{I(OD)} (2) Bushold Input Over-Drive, Current to Change State (3) 500 μA				I _{OL} = 64mA		0.55	
I _{I(OD)} (2) Bushold Input Over-Drive, Current to Change State 3.0 (2) 500 μA	I _{I(HOLD)} ⁽²⁾	Bushold Input Minimum Drive	3.0	V _I = 0.8V	.0		μΑ
Current to Change State (4) -500				V _I = 2 °V	-75		
$ \begin{array}{ c c c c c } \hline Current to Change State & (4) & -500 \\ \hline & I_1 & Input Current & 5.6 & V_1 = 5.7 & 10 & \mu A \\ \hline & Control Pins & 3.6 & = 0V \text{ or } V_{CC} & \pm 1 & 10 & \mu A \\ \hline & Data Pins & V_1 = 0V & -5 & 10 & \mu A \\ \hline & V_1 = 0V & -5 & 1 & 100 & \mu A \\ \hline & I_{DIF} & Power Off Leakane C & ent & 0 & 0V \leq V_{V} \text{ or } V_{O} \leq 5.5V & \pm 100 & \mu A \\ \hline & I_{PU/PD} & Power Up/D & vn, 3-STA. & 10 & nt & 0-1.5V & V_0 = 0.5V \text{ to } V_{CC} & \pm 100 & \mu A \\ \hline & I_{OZL} & 3 & \text{IATE Outp. } & \text{age Current} & 2.6 & V_0 = 0.5V & -5 & \mu A \\ \hline & I_{OZL}^{(2)} & 3-5 & \text{or } E \text{ O} & \text{but Leakage Current} & 3.6 & V_0 = 0.5V & -5 & \mu A \\ \hline & I_{OZL}^{(2)} & 3-5 & \text{or } E \text{ O} & \text{but Leakage Current} & 3.6 & V_0 = 3.6V & 5 & \mu A \\ \hline & I_{OZH}^{(2)} & 3-5 & \text{ATE Output Leakage Current} & 3.6 & V_0 = 3.6V & 5 & \mu A \\ \hline & I_{CCH} & Fover Supply Current & 3.6 & \text{Outputs HIGH} & 0.19 & \text{mA} \\ \hline & I_{CCH} & Fover Supply Current & 3.6 & \text{Outputs LOW} & 5 & \text{mA} \\ \hline & I_{CC2} & Power Supply Current & 3.6 & \text{Outputs Disabled} & 0.19 & \text{mA} \\ \hline & I_{CC2} & Power Supply Current & 3.6 & \text{Outputs Disabled} & 0.19 & \text{mA} \\ \hline & AI_{CC} & Increase in Power Supply Current & 3.6 & \text{One Input at } V_{CC} - 0.6V_{O} & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.19 & \text{mA} \\ \hline & Outputs Disabled & 0.19 & \text{mA} \\ \hline & Outputs Disabled & 0.19 & \text{mA} \\ \hline & Outputs Disabled & 0.19 & \text{mA} \\ \hline & Outputs Disabled & 0.19 & \text{mA} \\ \hline & Outputs Disabled & 0.19 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & \text{mA} \\ \hline & Outputs Disabled & 0.2 & $	I _{I(OD)} ⁽²⁾	Bushold Input Over-Drive,	3.0		500		μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Current to Change State		(4)	-500		7
$\begin{array}{ c c c c c c }\hline Data Pins & V_1 = CV & -5 \\\hline V_1 = V_{CC} & 1 \\\hline \\ I_{DU/PD} & Power Off Leakage Curent & 0 & CV \leq V_1 \text{ or } V_{CC} \leq 5.5V & \pm 100 & \mu A \\\hline \\ I_{PU/PD} & Power Up/D & vn, 3-STA. & Curent & 0-1.5V & V_0 = 0.5V \text{ to } V_{CC} \\\hline \\ I_{OZL} & 3 & \text{IATE Outp. To age Current} & 2.6 & V_0 = 0.5V & -5 & \mu A \\\hline \\ I_{OZL} & 3-2 & C & \text{O but Leakage Current} & 3.6 & V_0 = 0.5V & -5 & \mu A \\\hline \\ I_{OZL} & 3-2 & C & \text{O but Leakage Current} & 3.6 & V_0 = 3.0V & -5 & \mu A \\\hline \\ I_{OZH} & 3-2 & \text{ATE Output Leakage Current} & 3.6 & V_0 = 3.6V & 5 & \mu A \\\hline \\ I_{OZH} & 3-2 & \text{ATE Output Leakage Current} & 3.6 & V_0 = 3.6V & 5 & \mu A \\\hline \\ I_{CH} & 3-2 & \text{Output Leakage Current} & 3.6 & \text{Outputs HIGH} & 0.19 & mA \\\hline \\ I_{CCH} & Fover Supply Current & 3.6 & \text{Outputs LOW} & 5 & mA \\\hline \\ I_{CCZ} & Power Supply Current & 3.6 & \text{Outputs Disabled} & 0.19 & mA \\\hline \\ I_{CCZ} & Power Supply Current & 3.6 & \text{Outputs Disabled} & 0.19 & mA \\\hline \\ I_{CCZ} & Power Supply Current & 3.6 & \text{One Input at } V_{CC} - 0.6V_{CC} & 0.2 & mA \\\hline \\ D_{CCCZ} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & Increase in Power Supply Current & 0.2 & mA \\\hline \\ D_{CCC} & D_{CCC} & D_{CCC} & D_{CCC} & D_{C$	I _I	Input Current	J.6	V _I = 5 /	250	10	μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Control Pins	3.6	= 0V or V _{CC}	0, 1	±1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Data Pins		$V_1 = CV$	01/4	- 5	
$\begin{array}{ c c c c c c }\hline I_{PU/PD} & Power Up/D \ vn, 3-STA. \ Coront & U-15V \ V_O=0.5V \ to V_{CC} \\ \hline I_{OZL} & 3 \ \text{IATE Outp. 's age Current} & 2.6 \ V_O=0.5V \\ \hline I_{OZL}^{(2)} & 3-51 = 0 \ \text{out Leakage Current} & 3.6 \ V_O=0.0V \\ \hline I_{OZL}^{(2)} & 3-51 = 0 \ \text{out Leakage Current} & 3.6 \ V_O=3.0V \\ \hline I_{OZL}^{(2)} & 3-51 = 0 \ \text{output Leakage Current} & 3.6 \ V_O=3.0V \\ \hline I_{OZH}^{(2)} & 3-51 = 0 \ \text{output Leakage Current} & 3.6 \ V_O=3.6V \\ \hline I_{OZH}^{(2)} & 3-51 = 0 \ \text{output Leakage Current} & 3.6 \ V_O=3.6V \\ \hline I_{CCH} & Fover Supply Current & 3.6 \ Outputs HIGH \\ \hline I_{CCH} & Fover Supply Current & 3.6 \ Outputs LOW \\ \hline I_{CCC} & Power Supply Current & 3.6 \ Outputs Disabled \\ \hline I_{CCC} & Power Supply Current & 3.6 \ Outputs Disabled \\ \hline \Delta I_{CC} & Increase in Power Supply Current^{(5)} & 3.6 \ One Input at V_{CC} - 0.6V, Other Inputs at V_{CC} or \\ \hline \end{array}$				¥, ≠Vcc	.0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{OFF}	Power Off Leakage C ent	0	$0V \le V_i$ or $V_0 \le 5.5V$		±100	μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{PU/PD}	Power Up/D vn, 3-STA. ^nt	0-1.5V	$V_{()} = 0.5 \text{V to } V_{CC}$		±100	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{OZL}	3 ATE Out 1 age Current		$V_0 = 0.5$ V		– 5	μA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{OZL} ⁽²⁾	3-5 □ O put Leakage Current	3.6	$V_D = 0.0V$		– 5	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JL.	ST. Jutput Leakinge Current	3.6	$V_0 = 3.0V$		5	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	'2ZH ⁽²⁾	3- ATE Output Leakage Current	3.6	$V_0 = 3.6V$		5	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3-STATE Output Leakage Current	3.6	$V_{CC} < V_O \le 5.5V$		10	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICCH	Folver Supply Current	3.6	Outputs HIGH	A	0.19	mA
Power Supply Current 3.6 $V_{CC} \le V_O \le 5.5V$, Outputs Disabled 0.19 mA ΔI_{CC} Increase in Power Supply Current ⁽⁵⁾ 3.6 One Input at $V_{CC} = 0.6V$, Other Inputs at V_{CC} or	Icci	Power Supply Current	3.6	Outputs LOW		5	mA
Outputs Disabled $\Delta I_{CC} \text{Increase in Power Supply Current}^{(5)} 3.6 \text{One Input at V}_{CC} - 0.6 \text{V}, \\ \text{Other Inputs at V}_{CC} \text{ or} 0.2 \text{mA}$	Iccz	Power Supply Current	3.6	Outputs Disabled		0.19	mA
Outputs Disabled ΔI_{CC} Increase in Power Supply Current ⁽⁵⁾ 3.6 One Input at $V_{CC} - 0.6V$, Other Inputs at V_{CC} or	CCZ+	Power Supply Current	3.6			0.19	mA
Other Inputs at V _{CC} or				Outputs Disabled			
	Δl _{CC}	Increase in Power Supply Current ⁽⁵⁾	3.6			0.2	mA

Notes

- 2. Applies to Bushold versions only (LVTH245).
- 3. An external driver must source at least the specified current to switch from LOW-to-HIGH.
- 4. An external driver must sink at least the specified current to switch from HIGH-to-LOW.
- 5. This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics⁽⁶⁾

		V _{CC}	Conditions	٦	$\Gamma_{A}=25^{\circ}$		
Symbol	Parameter	(V)	$C_L = 50 \text{ pF, } R_L = 500\Omega$	Min.	Тур.	Max.	Units
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	(7)		0.8		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	(7)		-0.8		V

Notes:

- 6. Characterized in SOIC package. Guaranteed parameter, but not tested.
- 7. Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		$T_A = -4^{\circ}C$ $C_L = 50 \text{ p.}$	t 3°C, R _L 50′ 2	N.	0
		$V_{CC} = 2 \ 3V - 3.3V$	V _{CC} =	2.79	
Symbol	Parameter	K M.	Milh.	Max.	Units
t _{PLH}	Propagation Delay	1.2 3.6	1.2	4.0	ns
t _{PHL}		2 3.5	1.2	4.0)\
t _{PZH}	Output Enable Time	1.5 5.5	1.3	7.1	ns
t _{PZL}		1.7 5.7	17	6.7	
t _{PHZ}	Output Disable	2.0 5.)	20	6.5	ns
t _{PLZ}		2.0 5.0	2.0	5.1	
t _{OSHL} , t _{OSLH}	Output Cipul 'rew(8)	1.0		1.0	ns

Note:

8. Skew is defined as the isolar value of the difference between the actual propagation delay for any two separation. The specification applies to any outputs switching in the same direction, either H. H-to-LOW occur) or LO V-to-HIGH (t. sc. u.).

C. aci ince⁽⁹⁾

Symbol	Farameter	Conditions	Typical	Units
Chr	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF
COUT	Output Cape citance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Vote:

9. Capacitance is measured at frequency f = 1MHz, per MIL-STD-883, Method 3012.

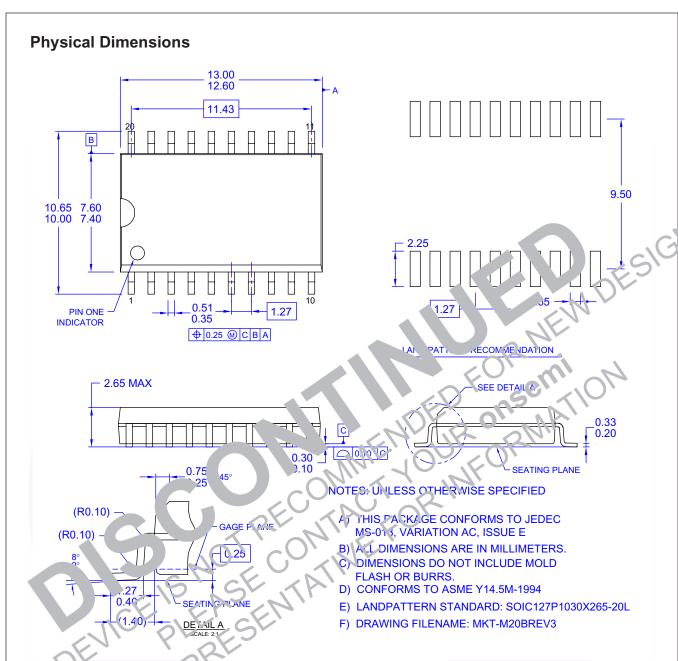


Figure 1. 20-Level Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued) 12.6±0.10 0.40 TYP -A-20 11 12 11 5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-3.9 △ 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT. J.6 TYP 1.27 ALL LEAD TIPS △ 0.1 C 2.1 MAX. -C-0.15 - 0.250.35-0.51 1.27 TYP 7° TYP ARE IN MILLIMETER GAGE PLANE 0°-8° TYP CONFORMS TO LIAU EDG-7320 REGISTRATION ESTABLISHED IN DECEMBER, 1998. D.Y.L.NSIONS ARE EXCLUSIVE OF TURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60 ± 0.15 SEATING PLANE 1.25 -DETAIL A

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

M20DREVC

Physical Dimensions (Continued) 0.68 TYP В 9.12 5.58 5.3±0.30 7.8 10 3.9 △ 0.2 C A B PIN #1 IDENT. RECOMMENDATIONS △ 0.10 C ALL LEAD TIPS 1.75±0 2.0 MAX. 0.65 TYP 0.15M L GAGE PLANE NOTES 0.25 NFORMS TO JEDIC REGISTRATION ARIATION AC, LATE 1/94. DIMENSIONS ARE IN MILLINIZIERS. 0.75±0.2 DIMENSIONS ARE FACLUSIVE CF DURRS, MOLD FLASH, AND THE BAR EXTRUSIONS SEATING PLANE (1.25) CIMENSIONS AND TOLERAILC'S PER ASME Y14.5M - 1994. DETAIL A

Figure 3. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

SA20REVE

Physical Dimensions (Continued) 5.5±0.1 -A--0.20 وحا 4.16 6,4 4.4±0.1 -B-3,2 0.2 C B A 0.65 ALL LEAD PIN #1 IDENT. O.1 C -0.90 1.2 -C-0.09-0.20 0.05 0.65 -12.00° GAGE PLANE 0.25 SEATING PLANE CONFORMS TO JEDEC RESISTRATION MIL-133 REF NOTE 6, DATE 7/33. VARIATION AC, -0.6±0.1 R0.09min D'MENSIONS ARE IN MILLIMETERS. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS

MTC20REVD1

D. DIMENSIONS AND TO ERANCES PER ANSI Y14.5M, 1982.

Figure 4. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

DETAIL A

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ $CROSSVOLT^{\text{TM}}$ CTL™

Current Transfer Logic™ EcoSPARK® EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT[®] $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® FPS™ $\mathsf{FRFET}^{\scriptscriptstyle{\textcircled{\tiny{\$}}}}$

Global Power Resource[™]

Green FPS™

Green FPS™e-Series™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET™ MicroPak™

MillerDrive™ Motion-SPM™ OPTOLOGIC® **OPTOPLANAR®** PDP-SPM™ Power220® POWEREDGE® Power-SPM™ PowerTrench[®]

Programmable Active Droop™ OFFT[©]

QS™

QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START SPM[®] STEA' TH' Superl T™

-SO 43 S erc Su, SOT -8 SupreMOS™ SyncFET™

SYSTEM ® GENERAL The Power Franchise®

bwer riny ost™ TinyB、™ TinyLo___® VY TO Ti y Power TinyP'VM™ TinyVVire M

บSerDes™ CHC® Ultra FRFET™ Ur.'⊏.∵T™

√CX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVE RILL TITO. LE CHALIGES WITHOUT FURTHER NOT CE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FLICTION, RILL SIGN. FAIR CHALIGES NOT A SSUME AND LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CHURCH DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE COUNTY OF SIGNATURE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND ONDITIONS. .-ICALLY THE WARRANTY THERE'N, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT OLICY

FAIRCHILE PL RE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS V HOUT THE XPRESS WRITTEN AFPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

Life s por devices or systems are devices or systems thich a) are intended for surgical implant into the body or pport of suscain life, and (c) whose failure to perform when properly used in a condance with a structions for use provided in the labeling, can be reasonably expected to result in a significant injury of the uper.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I33

^{*} EZSWITCH™ and FlashWriter® are trademarks of Stem Ge ral Coi, ration, used under licence in Fairchild Semiconductor.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative