

Is Now Part of

OR NEW DESIGN

IN Semiconductor®

To k an more about CH Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor referses, employees, subsidiaries, and lis officers, and designed, intended, or authorized for use, and reasonable attorney fees arising out or, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an eg

January 2015

FAN6605 mWSaver[™] PWM Controller

Features

- mWSaver[™] Technology Provides Industry's Best-in-Class Standby Power
 - <100 mW at 25-mW Load for LCDM Adaptor
 - Internal High-Voltage JFET Startup
 - Low Operating Current: Under 2 mA
 - Adaptively Decrease PWM Frequency with Cycle Skipping to 23 kHz at Light-Load Condition for Better Efficiency
 - Feedback Impedance Switching During Minimum Load or No Load
- Proprietary Asynchronous Frequency Hopping Technique that Reduces EMI
- Fixed PWM Frequency: 65 kHz
- Internal Leading-Edge Blanking
- Built-in Synchronized Slope Compensation
- Auto-Restart Protection: Feel ack Op I-Loop Protection (OLP), V Over-Vc, and June Over-Temp ature Protection (OTP), and Line Over-V je Filtectio
- Soft Cate Clamped Output Voltage. 13 v
- V-> Ur. \r-Veltaer _ockout (UVI_O)
- Pros mr. ble Constant Power Limi (Full) : Input Range)
- al OTF Sensor with Hysteresis
- Build-in 5 ms Soft-Start Function
- Inplu Voltage Sensing (Vin Pin) for Brown-In/Out Protection with Hysteresis and Line Over-Voltage Protection

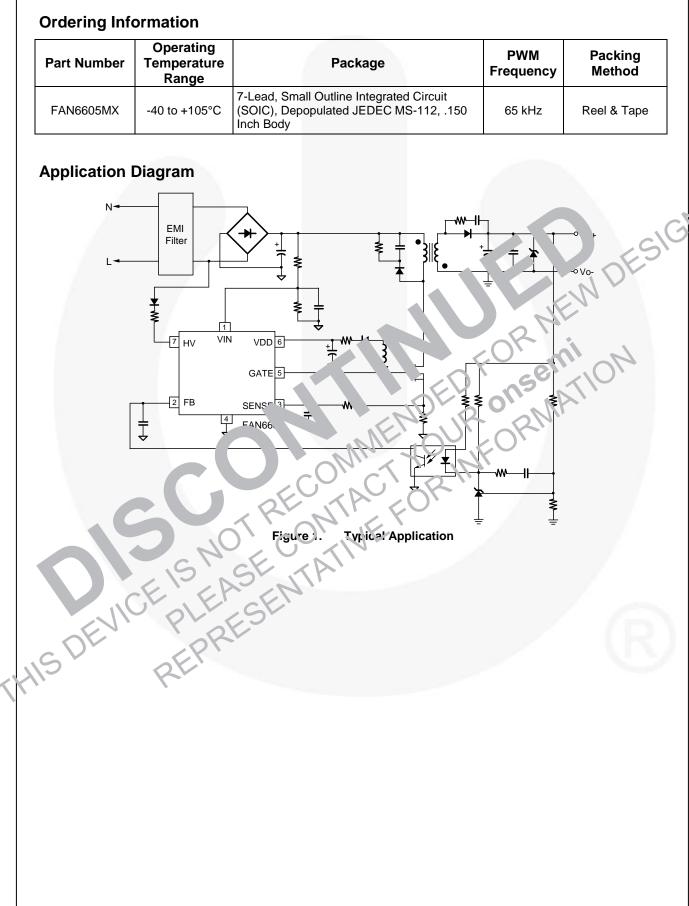
Applications

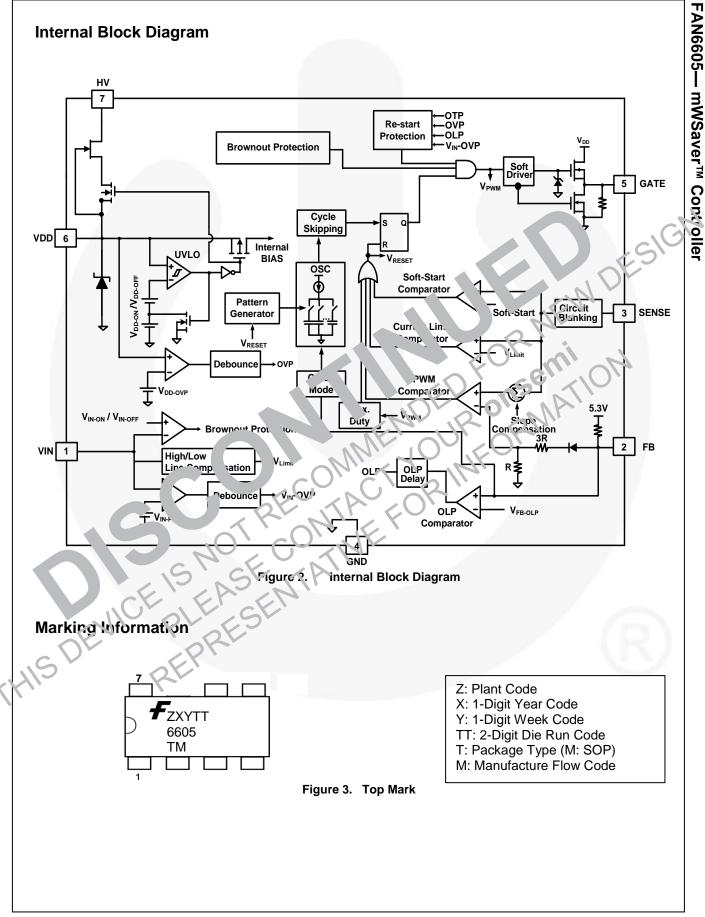
General-purpose switched-mode power supplies and flyback power converters, including:

- LCD Monitor Power Supply
- Open-Frame SMPS

Description

This highly integrated PWM controller provides several features to enhance the perf ... ce of flyback converters.


To minimize standby provinces, botton a productary adaptive green-mode furtion access switching frequency at light ad indition. To avoid ecousticnoise problets, the minimir in WM frequency is set above 2° kHz. This given-mode function enables the power sup 'vitcheet international power conservation requirements such as Energy Star[®]. With the internal inhibit tage intubic crutiting, the power loss caused by bindin resistors is also eliminated. To further reduce power consumption, FAN6600 uses the BiCMOS process, which allows an operating current of only 2 mA. The standby power consumption can be under 100 m/V to most of 2 CD monitor power supply designs.

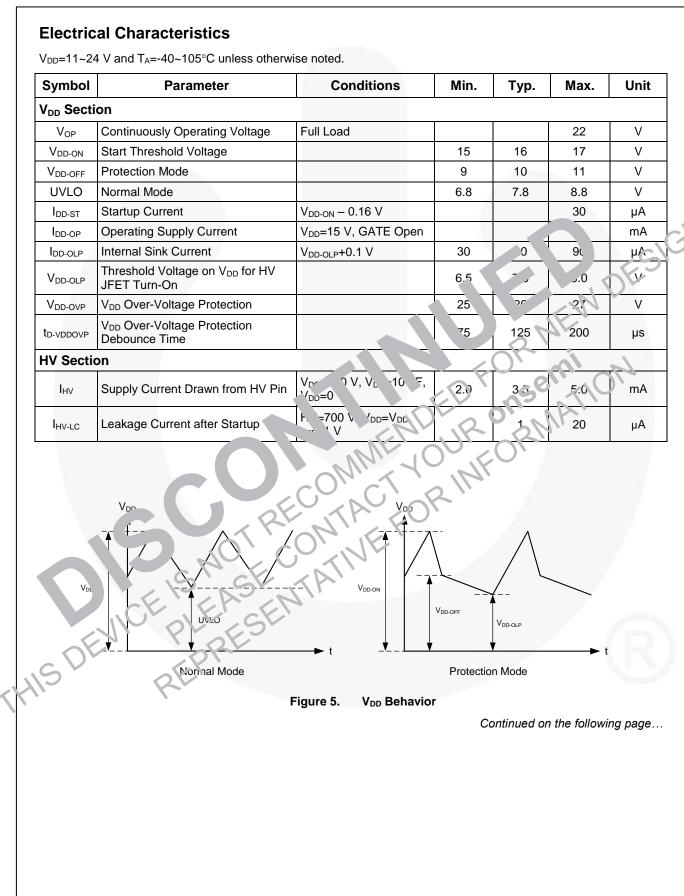

FANCo05 integrates a f equency-hopping function that reduced E.M. emission of a power supply with minimum line filters. The built-in synchronized slope compensation achieves a stable peak-current-mode control and improves noise immunity. The proprietary line compensation ensures constant output power limit over a wide AC input voltage range from 90 V_{AC} to $2\zeta^4 V_{AC}$.

FAN6605 provides many protection functions. The internal feedback open-loop protection circuit protects the power supply from open-feedback-loop condition or output-short condition. It also has line under-voltage protection (brownout protection) and over-voltage protection using an input voltage sensing pin (V_{IN}).

FAN6605 is available in a 7-pin SOP package.

ENERGY STAR® is a registered trademark of the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Pin Configuration SOP-7 VIN ΗV Г 7 FB 2 Г SENSE 6 VDD 3 GND 5 GATE 4 Figure 4. **Pin Configuration (Top View)**


Pin Definitions

Pin #	Name	Description
1	VIN	Line-voltage detection. The line-voltage detection is us of for bit in output power limit over universal AC inputiance is also achieved while this VIN pin. It is suggested to add a low-pass filter to filter of the time to be used bulk capacitor. Pulling VIN HIGH also triggers auto-restart protection
2	FB	The signal from the external composation. incluits fed into this pin. The PNN duty sycle is determined in response to the signal on this in and the current-sense signal on the CENSE pin.
3	SENSE	Current sense. The sensed vage is ad for perk-current-mode current limiting.
4	GND	Ground
5	GATE	The totem-pc output rive Soft-driving waveform is implemented for improved EMI.
6	VDD	Pow supply. 'he int nal protection circuit disables PWN' output as long as V _{DD} exceeds the OV trigger point.
7	HV	For trup, is pin is connected to the line input or bulk capacitor in series with resistors.
SD	EVIC	ror tup, is pin is connected to the line input or bulk capacitor in series with resistors.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{VDD}	DC Supply Voltage ^(1, 2)			30	V
V_{FB}	FB Pin Input Voltage		-0.3	6.0	V
V _{SENSE}	SENSE Pin Input Voltage		-0.3	6.0	V
V_{VIN}	VIN Pin Input Voltage		-0.3	6.0	V
V_{HV}	HV Pin Input Voltage			700	V
PD	Power Dissipation (T _A $<$ 50°C)			00	mW
Θ_{JA}	Thermal Resistance (Junction-to-Air)			°C/W
TJ	Operating Junction Temperature		2	+125	0
T _{STG}	Storage Temperature Range		-5.	r150	°C
ΤL	Lead Temperature (Wave Soldering	or IR, 10 Seconds)		+200	°C
505	Human Body Model, JEDEC: JESD22-A114	All Pins Excopt		5.5	
ESD	Charged Device Model, JEDEC: JESD22-C101	A!' Excep. 'V		20	Oxv
2. Stress	age values, except differential ves beyond those listed und Abs. the vite with HV pin: CDM=2000 and AM.	ns. La giver, with respan e . hum Ratings may 500 V.	ct to th€ n ⊴twork y cause µerman	ground termina ent darnage to t	al. the device.
2. Stress 3. ESD w	es beyond those listed up? Abs the	Source of the second se	t to the n ^r atwork y cause μerman	ground termina ent dernage to t	al. the device.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Uni
Oscillato	r Section		·			
f	Frequency in Nerrol Marti-	Center Frequency	62	65	68	1-1-1
f _{osc}	Frequency in Normal Mode	Hopping Range	±4.5	±5.2	±5.9	kH:
f _{OSC-G}	Green-Mode Frequency		20	23	26	kH:
t _{HOP}	Hopping Period		10	12	14	ms
t _{SKIP-N}	Pulse-Skipping Period ⁽⁴⁾	V _{FB-SKIP} <v<sub>FB<v<sub>FB-N</v<sub></v<sub>	180	200	220	ms
t _{SKIP-G}	Pulse-Skipping Period ⁽⁴⁾	V _{FB-G} <v<sub>FB<v<sub>FB-SKIP</v<sub></v<sub>	90			ms
f _{DV}	Frequency Variation vs. V _{DD} Deviation	V_{DD} =11 V to 22 V			J	%
f _{DT}	Frequency Variation vs. Temperature Deviation	$T_{A}=T_{J}=-40$ to 105°C			5	%
VIN Section	on			N		
V _{IN-OFF}	PWM Turn-Off (Brownout) Threshold Voltage		0.66	0.70	9.74	V
V _{IN-ON}	PWM Turn-On (Brown-in) Threshold Voltage		VIN-OFF+ 0.17	V _{الع} ار + 0.20	V _{:/N-⊃r} ะ=+ ∂.23	V
V _{IN-Protect}	Threshold Voltage of V _{IN} Over- Voltage Protection	ENV	61	5.5	5.5	V
t _{VIN-Protect}	Debounce Time of V _{IN} ver- Voltage Protection	MMILYC	60	100	140	μs
Current-	Sense Secti	C^{U} , C^{I}				
V _{LIMIT} at V _{IN} =1 V	Thr J Vc hge for Surrent Linit	V _{IN} =1 V	0.80	0.83	0.86	v
V _{LIMIT} at V _{IN} -2 V	[•] hreshold [\] Itage for Current Linut		0.67	0.70	0.73	V
t _{PD}		KP'		100	200	ns
-в	Leading-Edge Blankin(1 Time	Steady State	240	290	340	ns
ts	Period During Soft-Start Time	Startup Time	4.0	5.5	7.0	ms
IS DF	VLimi V _{SENSE} =0.83V V _{SENSE} =0.7V		Protect =5.3V			
		Figure 6. V _{IN} vs. V _{SENSE}				
			Cont	inued on ti	he followin	g page

Г

Electrical Characteristics

 $V_{\text{DD}}\text{=}11\text{-}24$ V and $T_{\text{A}}\text{=}\text{-}40\text{-}105^\circ\text{C}$ unless otherwise noted.

PW.

fosc-

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Feedbacl	k Input Section		•			
Av	Internal FB Voltage Attenuation		1/4.5	1/4.0	1/3.5	V/V
Z_{FB}	Input Impedance	V _{FB} =4 V	10	15	19	kΩ
$V_{FB\text{-}OPEN}$	The Maximum Clamp of FB Voltage	FB Pin Open	5.1	5.3	5.5	V
$V_{\text{FB-OLP}}$	FB Open-Loop Protection Triggering Level	T _A =25°C	4.4	4.6	4.8	V
t _{D-OLP}	Delay Time of FB Pin Open-loop Protection		45.0	62.5	71	ms
V_{FB-N}	Green-Mode Entry FB Voltage		2.8	3.0		V
V_{FB-G}	Green-Mode Ending FB Voltage			V. 1-01		v
V _{FB-SKIP}	FB Threshold Voltage for Changing Pulse-Skipping Period ⁽⁴⁾		5	2.7	2.9	V
V _{FB-ZDCR}	FB Threshold Voltage for Zero-Duty Recovery		1.6	0.3	2.0	V
V _{FB-ZDC}	FB Threshold Voltage for Zero-Duty		.4	1.6	1.8	v
V _{fb-zdcr} - V _{fb-zdc}	ZDC Hysteresis		0.12	0.15	0.19	V

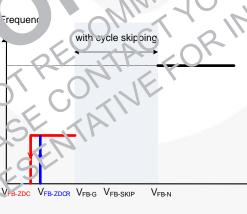
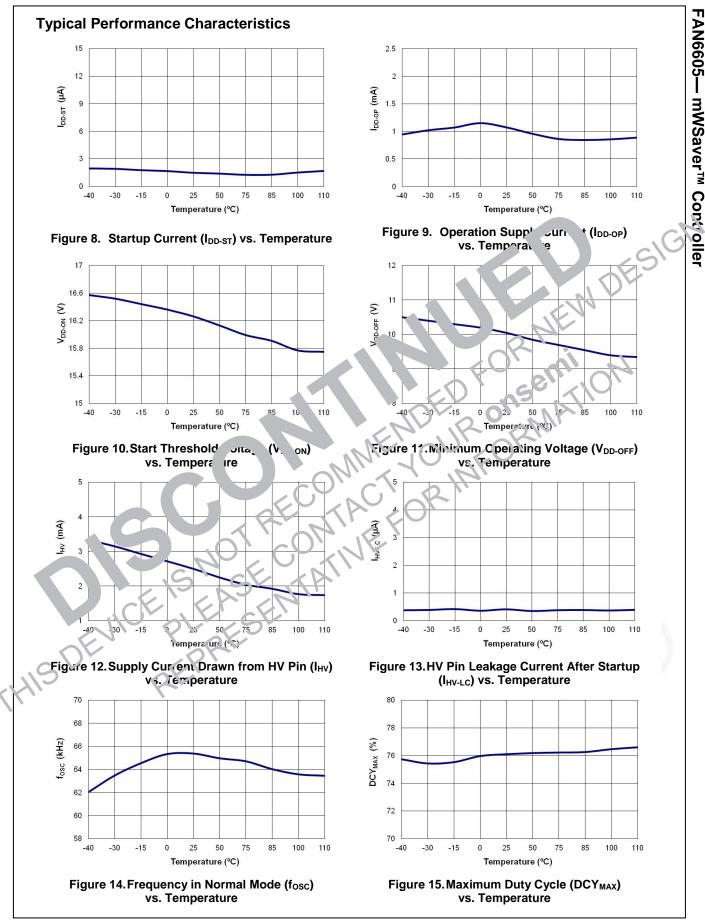


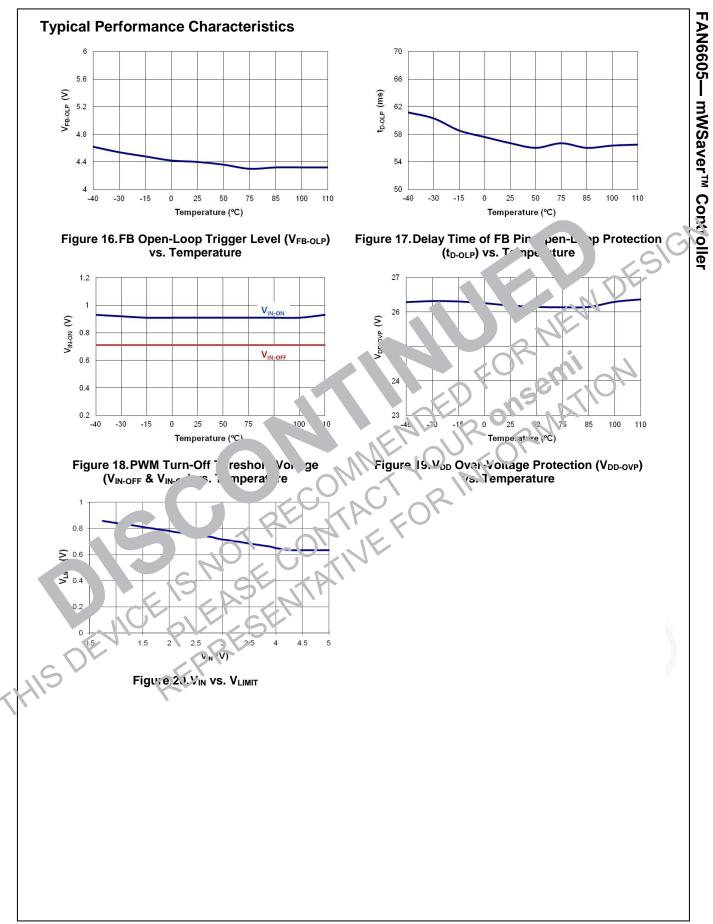
Figure 7. Cycle Skipping vs. V_{FB}

Continued on the following page...

ISDEVICE


Electrical Characteristics

 V_{DD} =11~24 V and T_A=-40~105°C unless otherwise noted.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
GATE Se	ction			•	•	
DCY _{MAX}	Maximum Duty Cycle		60	75	90	%
V _{GATE-L}	Gate Low Voltage	V _{DD} =15 V, I _O =50 mA			1.5	V
$V_{\text{GATE-H}}$	Gate High Voltage	V _{DD} =12 V, I _O =50 mA	8			V
tr	Gate Rising Time	V _{DD} =15 V, C _L =1 nF		100		ns
t _f Gate Falling Time		V _{DD} =15 V, C _L =1 nF		30		ns
I _{GATE-} SOURCE	Gate Source Current	V _{DD} =15 V, GATE=6 V		700		mA
V _{GATE-} CLAMP	Gate Output Clamping Voltage	V _{DD} =22 V			1	-15
Over-Ten	nperature Protection Section (OTP)				0
T _{OTP}	Protection Junction Temperature ^{(5,}	7)		Γ	S//4	°C
T _{Restart}	Restart Junction Temperature ^(6,7)			Torp-2.		°C
Notes : 4. Guara 5. When 6. When	ontee by design. OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum PV/Ms	witching.	onse	ATIC	11
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t	his level, i resum PV/Ms	witching.	onsei	mi ATIC	12
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs	witching.	onsei	mi ATIC	514
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs	witching.	onsei	mi ATIC	514
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs	witching.	onse	mi ATIC	514
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs	witching.	onsei	MIATIC	N/2
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum PV/Ms	witching.	onsei	mi ATIC	514
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs	witching.	onse orse	MIATIC	SPA SPA
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs	witching.	onsei	mi	R
Notes : 4. Guara 5. When 6. When	OTP is activated, the PWM switchin junction temperature is lower than t parameters are guaranteed by des	his level, i resum. PWMs		onsei	mi	R

IS DEVICE PLEASE

© 2014 Fairchild Semiconductor Corporation FAN6605 • Rev. 1.0

© 2014 Fairchild Semiconductor Corporation FAN6605 • Rev. 1.0

Functional Description

Startup Current

For startup, the HV pin is connected to the line input or bulk capacitor in series with diodes and/or resistors. If HV pin is connected to the line input, a 1-kV/ 1-A diode and a 100 k Ω resistor are recommended. If HV pin is connected to the bulk capacitor, only the resistor is required. Startup current drawn from pin HV (typically 3.5 mA) charges the hold-up capacitor through the diode and resistor. When the V_{DD} capacitor level reaches V_{DD-ON}, the startup current switches off. At this moment, only the VDD capacitor supplies the FAN6605 to maintain V_{DD} before the auxiliary winding of the main transformer to provide the operating current.

Operating Current

Operating current is below 2 mA. The low operating current enables better efficiency and reduces the requirement of V_{DD} hold-up capacitance.

Green-Mode Operation

The proprietary green-mode function provides an offtime modulation to reduce the switching frequency in light-load and no-load conditions. The on time is limit for better abnormal or brownout protection. V_{FB} , where is derived from the voltage feedback loop, is taken as the reference. Once V_{FB} is lower than the three and voltage, switching frequency is continuously decomposition of the cycle skipping to the minimum gree and final uency of around 23 kHz.

Current Sensing / P' ... Cu. ent / .miting

Peak-current-mode con pl is utilized to regulate output voltage and proporties by-put e current in iting. The switching current is determined by the current-setsing resistor $S_{\rm L}$ and $S_{\rm L}$. The PV/M duty cycle is determined by this or ent sense signal and VFB, the friends of the current the voltage or, the SENSE or, in ches a unit V_{COMP}=(VFB-0.6)/4, the PV/M switching tunioff in nediately.

Leaung-Edge Blanking (LEB)

Each tine the power MOCFET is switched on, a turn-on spike occurs on the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time is built in During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

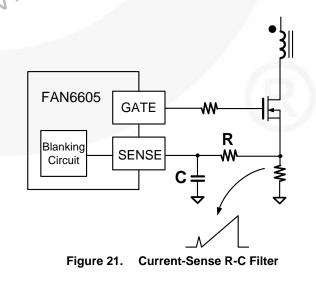
Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16 V and 7.8 V in normal mode. During startup, the hold-up capacitor must be charged to 16 V through the startup resistor to enable the IC. The hold-up capacitor continues to supply V_{DD} before the energy can be delivered from auxiliary winding of the main transformer. V_{DD} must not drop below 7.8 V during startup. This UVLO hysteresis window ensures that the hold-up capacitor is adequate to supply V_{DD} during startup.

Gate Output / Soft Driving

The BiCMOS output stage is a fast totem-pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 18 V Zener diode to protect power MOSFET transistors against undesirable gate over-voltage. A soft-driving circuit is implemented to minimize EMI.

Soft-Start


For many applications, it is necessary to minimize the inrush current at startup. The buil 5.5 ms soft-start circuit significantly reduces the artup corrent spike and output voltage overshoot.

Slope Compensa. n

The sensed voltage croothe content series to the content series to

Cc stant Output Power Limit

For constant output power limit over universal inputoltage range, the peak current threshold is adjusted by the voltage of the VIN pin Since the VIN pin is connected to the ectified AC input line voltage through the resist voldvider a higher line voltage generates a higher VIN voltage. The threshold voltage decreases as VIN increases, making the maximum output power at high-line input voltage equal to that at low-line input. The value of R-C network should not be so large that it affects the power limit (shown in Figure 21). R and C should be less than 100 Ω and 470 pF, respectively.

V_{DD} Over-Voltage Protection

V_{DD} over-voltage protection prevents damage due to abnormal conditions. Once the V_{DD} voltage is over the over-voltage protection voltage (V_{DD-OVP}), and lasts for t_{D-} VDDOVP, the PWM pulses are disabled. When the VDD voltage drops below the UVLO, the internal startup circuit turns on, and V_{DD} is charged to V_{DD-ON} to restart IC.

Feedback Impedance Switching

FAN6605 actively varies FB-pin impedance (Z_{FB}) to reduce no-load power consumption. This technique can further reduce operating current of the controller when FB-pin voltage drops below V_{FB-ZDC}.

Brownout Protection

Since the VIN pin is connected through a resistive divider to the rectified AC input line voltage, it can also be used for brownout protection. If V_{IN} is less than 0.7 V, the PWM output is shut off. When VIN reaches over 0.9 V, the PWM output is turned on again. The hysteresis window for ON/OFF is around 0.2 V. The brownout voltage setting is determined by the potential divider formed with RUpper and RLower. Equations to calculate the resistors are shown below:

$$V_{IN} = \frac{R_{Lower}}{R_{Lower} + R_{Upper}} \times V_{AC} \sqrt{2}, (unit = V)$$

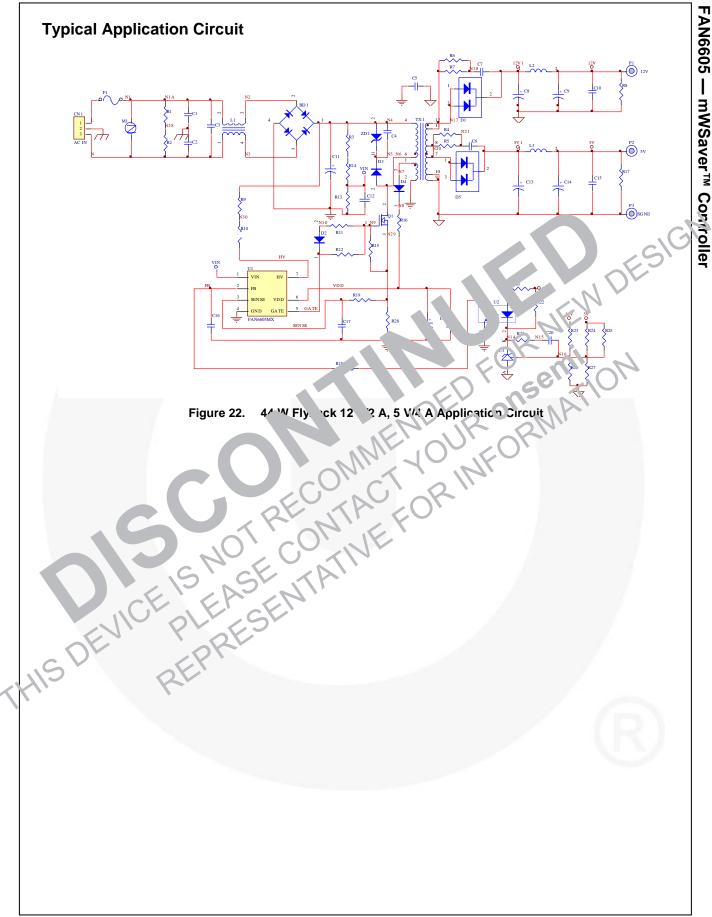
Thermal Overload Protection

Thermal overload protection mits ota power dissipation. When the junction temperature xceeds Ti-EASENTATIVE F +140°C, the thermal ser ,gna the sutdown logic;

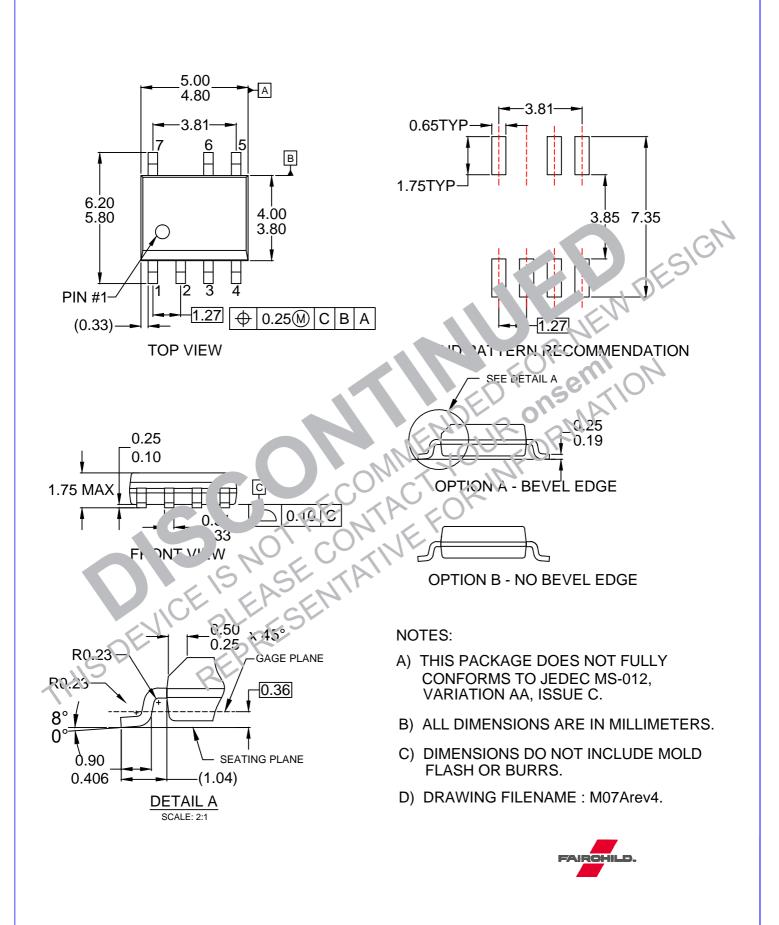
S DEVICE PLEASENTI

and turns off most of the internal circuitry. The thermal sensor turns internal circuitry on again after the IC's junction temperature drops by 25°C. Thermal overload protection is designed to protect the FAN6605 in the event of a fault condition. For continual operation, the controller should not exceed the absolute maximum junction temperature of $T_{1} = +140^{\circ}C$.

Limited Power Control


The FB voltage is saturated HIGH when the power supply output voltage drops below its nominal value and shunt regulator (KA431) does not draw current through the opto-coupler. This occurs when the output feedback loop is open or output is short circuited. If the FB voltage is higher than a built-in threshold ____ ger than t_{D-OLP}, PWM output is turned off. As F M output is turned off, V_{DD} begins decreasing lince o most energicits delivered from the aux in y wir ling

As the protection trig, ed, VD enters into UVLO mode. This rotectic feat continues as long as the over loading a dition prsists. This prevents the power supply from over patir due to over pading conditions.


01. nitv

(1)

Nine the current cense or control signal may cause sign can pulse-with jitter, centicularly in continuousconduction mode. Slope compensation helps alleviate his problem. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the FANES05, and increasing the gate resistor from CATE pin to MOSFET improve performance

Designator	Part Type	Designator	Part Type
BD1	BD 4 A/600 V	Q1	MOS 9 A/600 V
C1	YC 2200 pF/Y1	R1	R 1.5 MΩ 1/4 W
C2	YC 2200 pF/Y1	R2	R 1.5 MΩ 1/4 W
C3	XC 0.33 µF/300 V	R3	R 10 MΩ 1/4 W
C4	NC	R4, R5, R6, R7	R 47 Ω 1/4 W
C5	YC 2200 pF/Y1	R8, R17, R25, R27	NC
C6	CC 2200 pF/100 V	R9	R 50 KΩ 1/4 W
C7	CC 1000 pF/100 V	R10	R 50 KΩ 1/″
C8	EC 1000 µF/25 V	R11	R 0 0 1/8
C9	EC 470 µF/25 V	R12	Γ.(Ω ^{1/8})
C10	CC 100 pF/50 V	R13	R KΩ 1'8 W
C11	EC 100 µF/400 V	R14	101 TW
C12	C 1 µF/50 V	R15	10 KΩ 1/2 W
C13	EC 1000 µF/10 V	R16	R 1.Q 1/2 W
C14	EC 470 µF/10 V	R1	(R C Ω 1/8 W
C15	CC 100 pF/50 V	R19	R 100 🖸 1/8 W
C16	C 1 nF/50 V	20	R 1 KΩ 1/8 '.V
C17	C 470 pF/50 V	R21	R 4.7 XQ 1/8 W
C18	EC 47 μF/ ν V	R22	R.7.5 KΩ 1/8 W
C19	C 0 01 uF D V	R23	R 120 KΩ 1/8 W
C20	0.1 µF/50	R/4	R 15 KΩ 1/8 W
D1	F P1010	R26	R 10 KΩ 1/8 W
D2	N4140	R28	R 0.43 Ω 2 W
D3	R107	1541	800 µH(ERL-28)
	FI2103	U1	IC FAN6605
Dt	FYP1010	U2	IC PC817
ZD1	PEKE15CA	U3	IC TL431
F1	FUSE 44/2511		
M1	VZ 9G		
L1	13 mH		
L2	Inductor (2 µH)		
L3	Inductor (2 µH)		

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC