

MOSFET – P-Channel, POWERTRENCH®, Specified

2.5 V

FDC640P

General Description

This P-Channel 2.5 V specified MOSFET uses a rugged gate version of **onsemi**'s advanced POWERTRENCH process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5 V - 12 V).

Features

- -4.5 V, -20 V. $R_{DS(ON)} = 0.053 \ \Omega \ @V_{GS} = -4.5 \ V$ $R_{DS(ON)} = 0.080 \ \Omega \ @V_{GS} = -2.5 \ V$
- Rugged Gate Rating (±12 V)
- Fast Switching Speed
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- This is a Pb-Free and Halide Free Device

Applications

- Battery Management
- Load Switch
- Battery Protection

ABSOLUTE MAXIMUM RATINGS T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-Source Voltage	-20	V
V _{GSS}	Gate-Source Voltage	±12	V
I _D	Drain Current -Continuous (Note 1a.) -Pulsed	-4.5 -20	Α
P _D	Maximum Power Dissipation (Note 1a.) (Note 1b.)	1.6 0.8	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

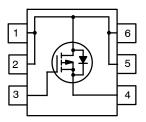
THERMAL CHARACTERISTICS T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Unit
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient (Note 1a.)	78	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	30	°C/W

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
-20 V	0.053 Ω @ -4.5 V	-4.5 A
	0.080 Ω @ -2.5 V	

TSOT23 6-Lead (SUPERSOT™-6) CASE 419BL

MARKING DIAGRAM


640 = Specific Device Code

M = Date Code

■ = Pb–Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
FDC640P	TSOT-23-6 (SUPERSOT™-6)	3000 / Tape & Reel
	(Pb-Free)	Tape & neer

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20	_	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = $-250 \mu A$, Referenced to 25°C	-	-14	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V	-	_	-1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 12 V, V _{DS} = 0 V	-	_	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$	-	_	-100	nA
ON CHARACT	FERISTICS (Note 2)		•		-	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.6	-1.0	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C	-	3	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -3.6 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ A}, T_J = 125 ^{\circ}\text{C}$	- - -	0.039 0.062 0.053	0.053 0.080 0.077	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-20	_	-	Α
9FS	Forward Transconductance	$V_{GS} = -5 \text{ V}, I_D = -4.5 \text{ A}$	_	16	_	S
DYNAMIC CH	ARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	_	890	_	pF
C _{oss}	Output Capacitance		_	244	_	pF
C _{rss}	Reverse Transfer Capacitance		_	123	_	pF
SWITCHING C	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, I_D = -1 \text{ A},$	_	12	22	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	-	9	18	ns
t _{d(off)}	Turn-Off Delay Time		-	24	38	ns
t _f	Turn-Off Fall Time		-	13	23	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_D = -4.5 \text{ A}, V_{GS} = -4.5 \text{ V}$	_	9	13	nC
Q _{gs}	Gate-Source Charge		-	2	-	nC
Q _{gd}	Gate-Drain Charge	1	_	3	-	nC
DRAIN-SOUR	RCE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS				
IS	Maximum Continuous Drain-Source Di	ode Forward Current	-	_	-1.3	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -1.3 A (Note 2)	_	-0.7	-1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.
 a.78°C/W when mounted on a 1in² pad of 2oz copper on FR-4 board.

 $b.156^{\circ}\text{C/W}$ when mounted on a minimum pad.

^{2.} Pulse Test: Pulse Width \leq 300 $\mu s, \, Duty \, Cycle \leq$ 2.0%.

TYPICAL CHARACTERISTICS

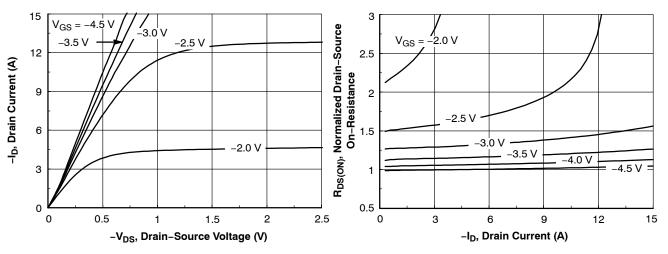


Figure 1. On-Region Characteristics

Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

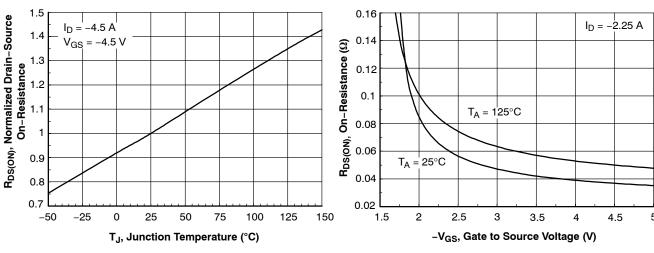


Figure 3. On-Resistance Variation with Temperature

Figure 4. On–Resistance Variation with Gate–to–Source Voltage

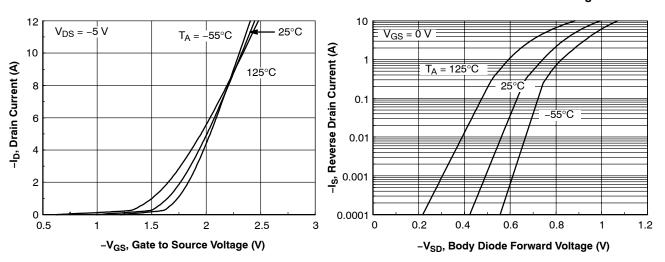
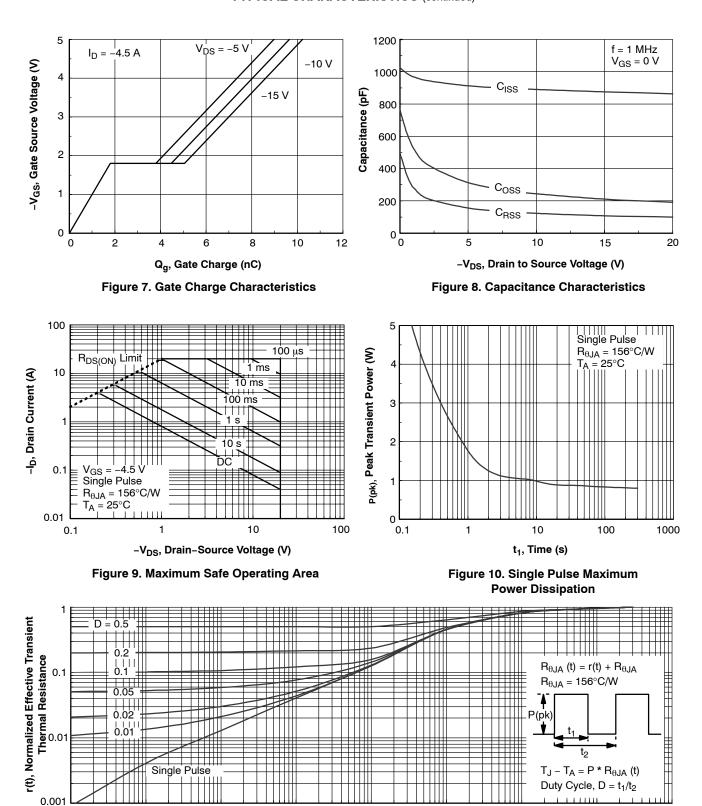



Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS (continued)

 $t_{1}, \mbox{ Time (s)} \\$ Figure 11. Transient Thermal Response Curve

0.1

0.01

0.00001

0.0001

0.001

10

100

1000

1

NOTE: Thermal characterization performed using the conditions described in Note 1b.

Transient thermal response will change depending on the circuit board design.

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SUPERSOT is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

0.20 C

// 0.10 C

0.10 C

PIN 1 **IDENTIFIER**

TSOT23 6-Lead CASE 419BL **ISSUE A**

-[A]

F1

-b

A2

C

GAGE PLANE

SEATING PLANE

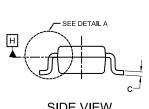
A1-

e1 TOP VIEW

FRONT VIEW

DETAIL A

В

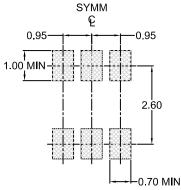

0.20 C

DATE 31 AUG 2020

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25MM PER END. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM L



DIM	MIN.	NOM.	MAX.
Α	0.90	1.00	1.10
A1	0.00	0.05	0.10
A2	0.70	0.85	1.00
А3	0.25 BSC		
b	0.25	0.38	0.50
С	0.10	0.18	0.26
D	2.80	2.95	3.10
d	0.30 REF		
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
е	0.95 BSC		
e1	1.90 BSC		
L1	0.60 REF		
L2	0.20	0.40	0.60
θ	0°		10°

MILLIMETERS

SIDE VIEW

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON83292G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOT23 6-Lead		PAGE 1 OF 1

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales