onsemi

MOSFET – Single, P-Channel, Logic Level, POWERTRENCH[®]

FDC658P

General Description

This P–Channel Logic Level MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on–state resistance and yet maintain low gate charge for superior switching performance. These devices are well suited for notebook computer applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

- -4 A, -30 V
 - $R_{DS(ON)} = 0.050 \ \Omega \ @ V_{GS} = -10 \ V$
 - $R_{DS(ON)} = 0.075 \ \Omega \ @ V_{GS} = -4.5 \ V$
- Low Gate Charge (8 nC Typical)
- High Performance Trench Technology for Extremely Low RDS(ON)
- SUPERSOT[™] –6 Package: Small Footprint (72% Smaller than Standard SO–8); Low Profile (1 mm Thick)
- This is a Pb–Free Device

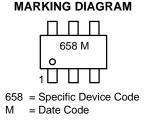
ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

Parameter	Value	Unit	
Drain-Source Voltage	-30	V	
Gate-Source Voltage - Continuous	±20	V	
Drain Current – Continuous (Note 1a)	-4	А	
– Pulsed	-20		
Maximum Power Dissipation (Note 1a)	1.6	W	
(Note 1b)	0.8		
Operating and Storage Temperature Range	-55 to 150	°C	
	Drain–Source Voltage Gate–Source Voltage – Continuous Drain Current – Continuous (Note 1a) – Pulsed Maximum Power Dissipation (Note 1a) (Note 1b) Operating and Storage Temperature	Drain–Source Voltage -30 Gate–Source Voltage – Continuous ±20 Drain Current – Continuous (Note 1a) -4 – Pulsed -20 Maximum Power Dissipation (Note 1a) 1.6 (Note 1b) 0.8 Operating and Storage Temperature -55 to 150	

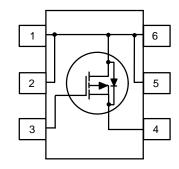
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS ($T_A = 25^{\circ}C$,	unless otherwise noted)
--	-------------------------

Symbol	Parameter	Max	Unit		
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W		
$R_{ hetaJA}$	Thermal Resistance, Junction–to–Case (Note 1)	30	°C/W		


1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 78°C/W when mounted on a 1 in² pad of 2 oz Cu on FR-4 board.


b. 156°C/W when mounted on a minimum pad of 2 oz Cu on FR-4 board.

TSOT23 6-Lead (SUPERSOT-6) CASE 419BL

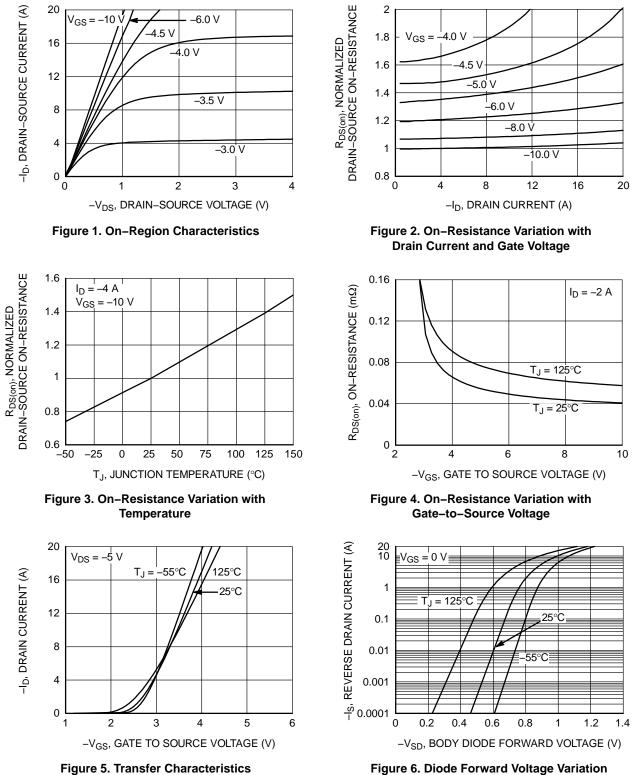
PIN ASSIGNMENT

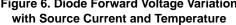
ORDERING INFORMATION

	Device	Package	Shipping [†]
FD	C658P	TSOT23–6 (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

FDC658P


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF CHARAC	CTERISTICS	•			•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-30	-	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	-	-22	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
		$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$	-	-	-10	μΑ
I _{GSSF}	Gate – Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	nA
I _{GSSR}	Gate – Body Leakage, Reverse	$V_{GS} = -20$ V, $V_{DS} = 0$ V	-	-	-100	nA
ON CHARAC	TERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-1	-1.7	-3	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25° C	-	4.1	-	mV/°C
R _{DS(ON)}	Static Drain–Source On–Resistance	$V_{GS} = -10$ V, $I_D = -4.0$ A	-	0.041	0.05	Ω
		$V_{GS} = -10$ V, $I_D = -4.0$ A, $T_J = 125^{\circ}C$	-	0.058	0.08	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -3.4 \text{ A}$	-	0.06	0.075	
I _{D(on)}	On-State Drain Current	$V_{GS} = -10$ V, $V_{DS} = -5$ V	-20	-	-	А
9 FS	Forward Transconductance	$V_{DS} = -5 V, I_D = -4 A$	_	9	-	S
DYNAMIC CH	ARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -15$ V, $V_{GS} = 0$ V, f = 1.0 MHz	-	750	-	pF
C _{oss}	Output Capacitance		-	220	-	pF
C _{rss}	Reverse Transfer Capacitance		-	100	-	pF
SWITCHING (CHARACTERISTICS (Note 2)					
t _{D(on)}	Turn – On Delay Time	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -1 \text{ A}, \text{ V}_{GS} = -10 \text{ V},$	-	12	22	ns
t _r	Turn – On Rise Time	R _{GEN} = 6 Ω	-	14	25	ns
t _{D(off)}	Turn – Off Delay Time		-	24	38	ns
t _f	Turn – Off Fall Time		-	16	27	ns
Qg	Total Gate Charge	$V_{DS} = -15$ V, $I_D = -4.0$ A, $V_{GS} = -5$ V	-	8	12	nC
Q _{gs}	Gate-Source Charge		-	1.8	-	nC
Q _{gd}	Gate-Drain Charge		-	3	-	nC
DRAIN-SOUF	CE DIODE CHARACTERISTICS					
I _S	Continuous Source Diode Current		-	-	-1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -1.3 A$ (Note 2)	-	-0.76	-1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

FDC658P

TYPICAL ELECTRICAL CHARACTERISTICS

FDC658P

TYPICAL ELECTRICAL CHARACTERISTICS (continued)

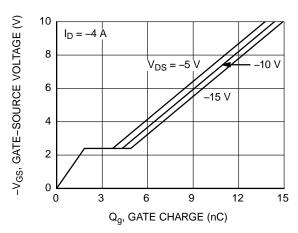
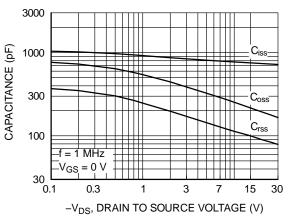



Figure 7. Gate Charge Characteristics

Figure 8. Capacitance Characteristics

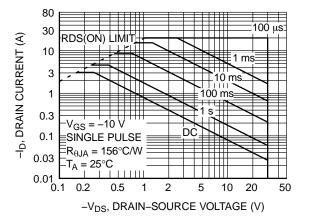


Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

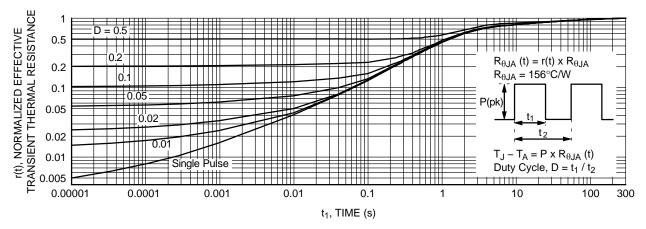
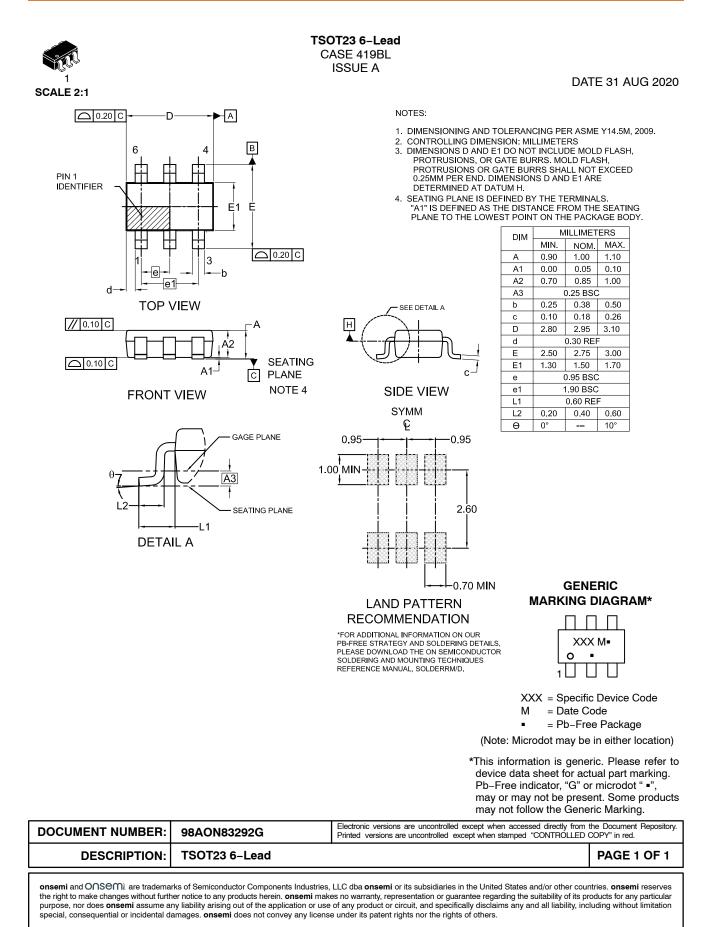



Figure 11. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SUPERSOT is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>