onsemi

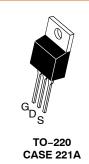
MOSFET – N-Channel, POWERTRENCH[®]

V _{DSS}	R _{DS(on)} MAX	I _D MAX				
100 V	15.0 m Ω @ 10 V	50 A				

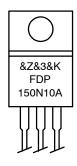
100 V, 50 A, 15 m Ω

FDP150N10A

Description


This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

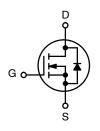
Features


- $R_{DS(on)} = 12.5 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$
- Fast Switching Speed
- Low Gate Charge, $Q_G = 16.2 \text{ nC}$ (Typ.)
- High Performance Trench Technology for Extremely Low RDS(on)
- High Power and Current Handling Capability
- RoHS Compliant

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MARKING DIAGRAM



 &Z
 = Assembly Plant Code

 &3
 = 3-Digit Date Code Format

 &K
 = 2-Digits Lot Run Traceability Code

 FDP150N10A
 = Device Code

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Symbol	Parameter	FDP150N10A_F102	Unit		
V _{DSS}	Drain to Source Voltage	100	V		
V _{GSS}	Gate to Source Voltage	±20	V		
I _D	Drain Current	Drain Current – Continuous (T _C = 25° C)		А	
		– Continuous (T _C = 100°C)	36		
I _{DM}	Drain Current	– Pulsed (Note 1)			
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	84.6	mJ		
dv/dt	Peak Diode Recovery dv/dt (Note 3)	6.0	V/ns		
PD	Power Dissipation $(T_C = 25^{\circ}C)$		91	W	
		- Derate Above 25°C	0.61	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	–55 to +175	°C		
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Cas	300	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. L = 2 mH, I_{AS} = 9.2 A, R_G = 25 Ω , starting T_J = 25°C. 3. I_{SD} ≤ 100 A, di/dt ≤ 200 A/µs, V_{DD} ≤ BV_{DSS}, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDP150N10A_F102	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	1.6	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS	-			•	
BV _{DSS}	Drain to Source Breakdown Voltage $I_D = 250 \ \mu$ A, $V_{GS} = 0 \ V$			-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.08	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	μΑ
		$V_{DS} = 80 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$	-	-	500	
I _{GSS}	Gate to Body Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±100	nA
ON CHARAG	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$	2.0	-	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	12.5	15.0	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	40	-	S
DYNAMIC C	HARACTERISTICS	-			•	
C _{iss}	Input Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	-	1080	1440	pF
C _{oss}	Output Capacitance		-	267	355	pF
C _{rss}	Reverse Transfer Capacitance		-	11	-	pF
C _{oss(er)}	Energy Related Output Capacitance	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	436	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 50 \text{ A},$	-	16.2	21.0	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	5.3	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	2.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	3.7	-	nC
ESR	Equivalent Series Resistance (G-S)	f = 1 MHz	-	1.3	-	Ω
SWITCHING	CHARACTERISTICS			-	•	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 50 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	13	36	ns
t _r	Turn–On Rise Time	- R _G = 4.7 Ω (Note 4)	-	16	42	ns
t _{d(off)}	Turn-Off Delay Time		-	21	52	ns
t _f	Turn–Off Fall Time		-	5	20	ns
DRAIN-SOU	IRCE DIODE CHARACTERISTICS		•	•		
۱ _S	Maximum Continuous Drain to Source Diode Forward Current			-	50	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	200	А
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 50 A	-	-	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 50 V, I _{SD} = 50 A,	-	50	-	ns
Q _{rr}	Reverse Recovery Charge	dl _F /dt = 100 A/μs	_	55	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

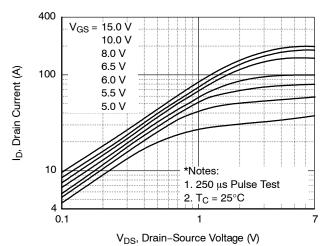


Figure 1. On-Region Characteristics

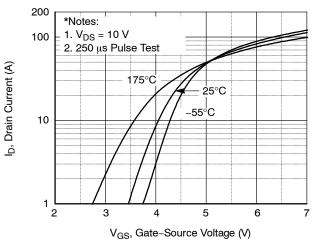


Figure 2. Transfer Characteristics

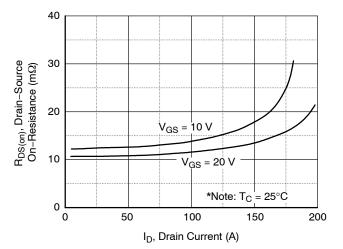


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

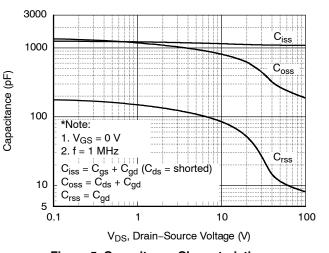


Figure 5. Capacitance Characteristics

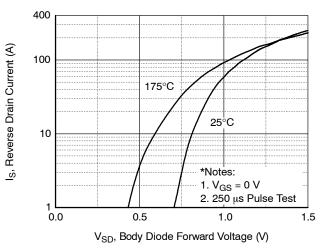


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

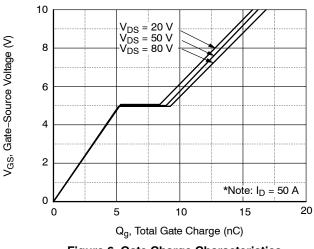
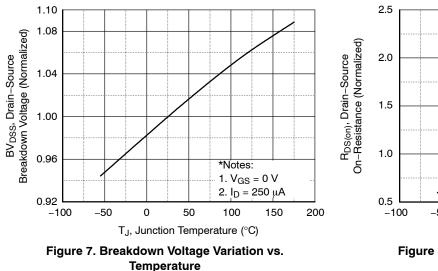



Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

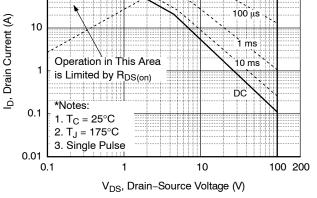
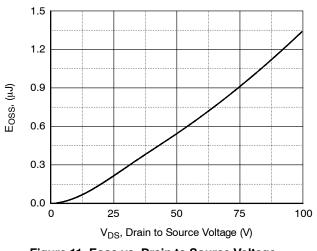



Figure 9. Maximum Safe Operating Area

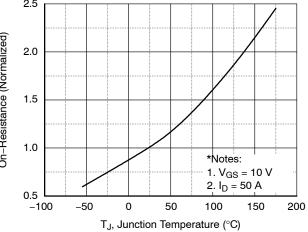


Figure 8. On-Resistance Variation vs. Temperature

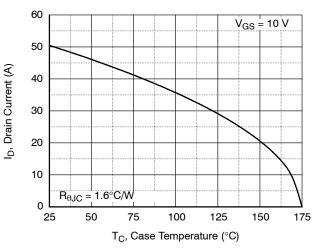
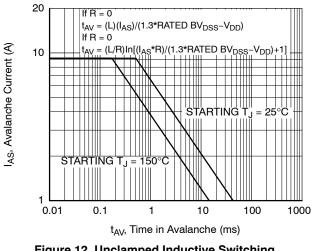
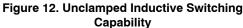




Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

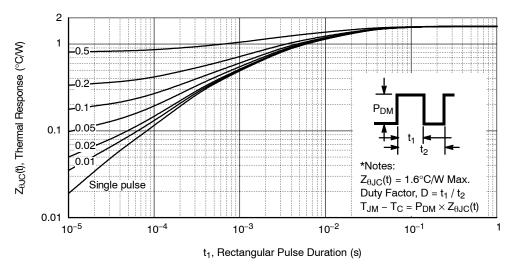


Figure 13. Transient Thermal Response Curve

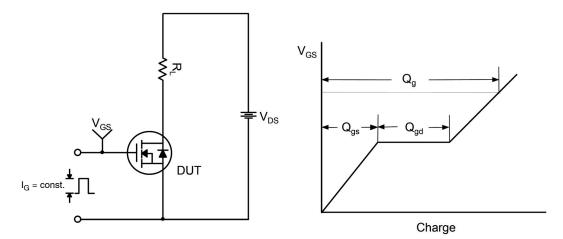


Figure 14. Gate Charge Test Circuit & Waveform

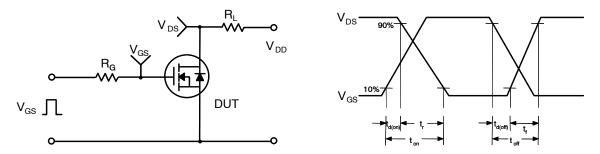


Figure 15. Resistive Switching Test Circuit & Waveforms

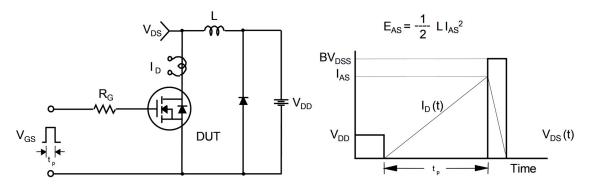


Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

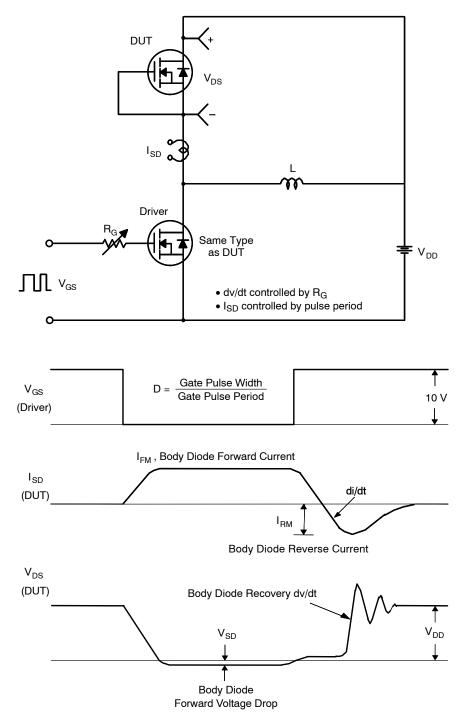


Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

ORDERING INFORMATION

Part Number	Part Number Device Marking		Reel Size	Tape Width	Shipping	
FDP150N10A-F102	FDP150N10A	TO-220	N/A	N/A	800 Units / Tube	

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

	TO-22 CASE 2 ISSUE	21A					DATE	13 JAN 2022
SCALE 1:1		PLANE 1 2 3.	. CONT . DIMEI LEA	ROLLING D NSION Z DE D IRREGUL/ WIDTH FOR	AND TOLERAI IMENSION: IN FINES A ZONI ARITIES ARE A F102 DEVICE	NCHES E WHERE AL ALLOWED. E = 1.35MM	L BODY AND	
A A				INC	1	MILLIM		
	Ŭ		DIM	MIN.	MAX.	MIN.	MAX.	
1 2 3			A	0.570	0.620	14.48	15.75	
			B	0.380	0.415	9.66	10.53	
<u>╄</u> <u></u>			C D	0.160	0.190	4.07	4.83	
			F	0.025	0.038	0.64 3.60	0.96 4.09	
Z-J K			G	0.095	0.101	2.42	2.66	
			н	0.110	0.161	2.42	4.10	
				0.014	0.024	0.36	0.61	
			ĸ	0.500	0.562	12.70	14.27	
∨4	R —		L	0.045	0.060	1.15	1.52	
G	J → →		N	0.190	0.210	4.83	5.33	
_ → → D			Q	0.100	0.120	2.54	3.04	
N			R	0.080	0.110	2.04	2.79	
			s	0.045	0.055	1.15	1.41	
			т	0.235	0.255	5.97	6.47	
			U	0.000	0.050	0.00	1.27	
			V	0.045		1.15		
			Z		0.080		2.04	
STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. BASE 2. EMITTER 3. COLLECTOR 4. EMITTER	3. 0	CATHODI NODE GATE NODE		2. MA 3. GA	in terminal In terminal Te In terminal	.2	
STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 6: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE	3. 0	Cathodi Node Cathodi Node	E	STYLE 8: PIN 1. CA 2. AN 3. EX 4. AN	ode Ternal Trip	/DELAY	
STYLE 9: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 10: PIN 1. GATE 2. SOURCE 3. DRAIN 4. SOURCE	3. 0	OURCE		2. MA 3. GA	NIN TERMINAL NIN TERMINAL TE DT CONNECTI	.2	

 DOCUMENT NUMBER:
 98ASB42148B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TO-220
 PAGE 1 OF 1

 onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi asime any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>