

MOSFET – Dual, P-Channel, POWERTRENCH®

2.5 V Specified

FDS9933A

General Description

These P-Channel 2.5 V specified MOSFETs are produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

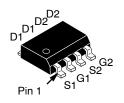
Features

- -3.8 A, -20 V. $R_{DS(on)} = 0.075 \Omega$, $V_{GS} = -4.5 \text{ V}$ $R_{DS(on)} = 0.105 \Omega$, $V_{GS} = -2.5 \text{ V}$
- Low Gate Charge (7 nC Typical)
- Fast Switching Speed
- High Performance Trench Technology for Extremely Low RDS(on)
- High Power and Current Handling Capability
- This Device is Pb-Free and Halide Free

Applications

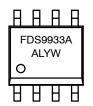
- Load Switch
- DC/DC Converters
- Motor Drives

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

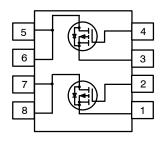

Symbol	Parameter		Value	Unit	
V _{DSS}	Drain-Source Voltage		-20	V	
V_{GSS}	Gate-Source Voltage		±8	V	
I _D	Drain Current	Continuous (Note 1a)	-3.8	Α	
		Pulsed	-20		
P_{D}	Power Dissipation for Dual Operation		2.0	W	
	Power Dissipation for Single Operation (Note 1a) 1.6 (Note 1b) 1.0 (Note 1c) 0.9				
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to 150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Symbol	Parameter	Value	Unit	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	40	°C/W	

1


SOIC8 CASE 751EB

MARKING DIAGRAM

FDS9933A = Device Code
A = Assembly Site
L = Wafer Lot Number
YW = Assembly Start Week

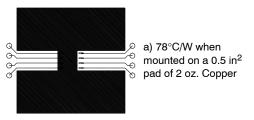
PIN CONNECTIONS

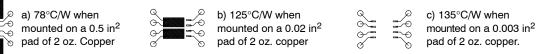
ORDERING INFORMATION

Device	Package	Shipping [†]		
FDS9933A	SOIC8	2500 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

FDS9933A


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C	-	-16	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V	_	-	-1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 8 V, V _{DS} = 0 V	_	-	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -8 V, V _{DS} = 0 V	_	-	-100	nA
ON CHARA	CTERISTICS (Note 2)					
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.4	-0.8	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C	-	2.5	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -3.8 \text{ A}$	_	0.058	0.075	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -3.8 \text{ A}, T_J = 125^{\circ}\text{C}$	-	0.086	0.12	
		$V_{GS} = -2.5 \text{ V}, I_D = -3.3 \text{ A}$	_	0.084	0.105	
I _{D(on)}	On-State Drain Current	V _{GS} = -4.5 V, V _{DS} = -5.0 V	-10	-	-	Α
9FS	Forward Transconductance	$V_{DS} = -4.5 \text{ V}, I_D = -3.8 \text{ A}$	-	10	-	S
DYNAMIC C	CHARACTERISTICS		-	·=	-	
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	_	600	_	pF
C _{oss}	Output Capacitance	7	_	175	-	pF
C _{rss}	Reverse Transfer Capacitance	7	_	80	-	pF
SWITCHING	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -5 \text{ V}, I_D = -0.5 \text{ A}, V_{GS} = -4.5 \text{ V},$	_	6	12	ns
t _r	Turn-On Rise Time	$R_{GS} = 6.0 \Omega$	_	9	18	ns
t _{d(off)}	Turn-Off Delay Time		_	31	50	ns
t _f	Turn-Off Fall Time		_	28	42	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_D = -3.8 \text{ A}, V_{GS} = -4.5 \text{ V}$	_	7	10	nC
Q _{gs}	Gate-Source Charge		_	1.3	-	nC
Q _{gd}	Gate-Drain Charge	7	_	2	-	nC
DRAIN-SOL	URCE DIODE CHARACTERISTICS AND	MAXIMUM RATINGS				•
I _S	Maximum Continuous Drain-Source Dio	de Forward Current	-	_	-1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -1.3 A (Note 2)	_	-0.75	-1.2	V
	•	•		•		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient resistance where the case thermal reference is defined as the solder mounting

surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

2. Pulse Test Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

FDS9933A

TYPICAL CHARACTERISTICS

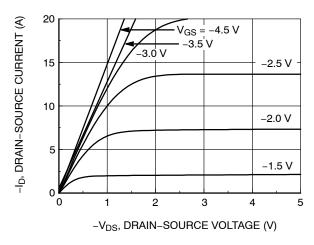


Figure 1. On-Region Characteristics

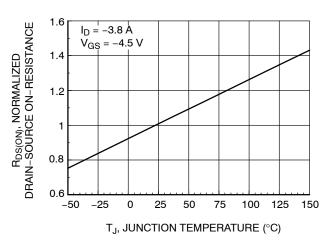


Figure 3. On-Resistance Variation with Temperature

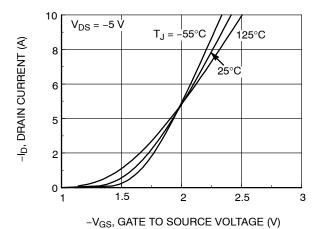


Figure 5. Transfer Characteristics

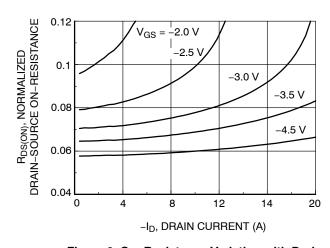


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

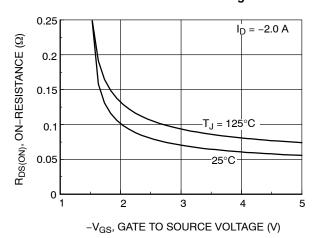


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

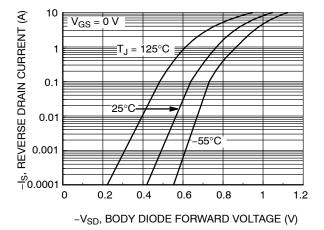


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDS9933A

TYPICAL CHARACTERISTICS (continued)

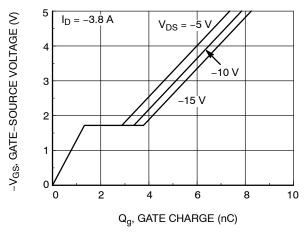


Figure 7. Gate Charge Characteristics

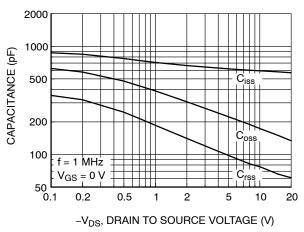


Figure 8. Capacitance Characteristics

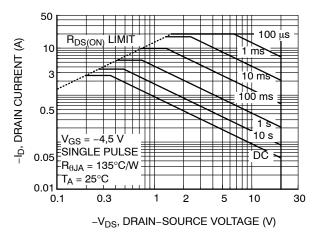


Figure 9. Maximum Safe Operating Area

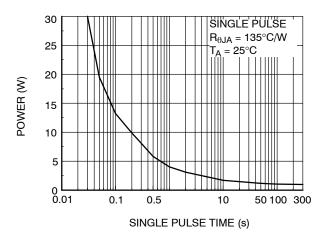


Figure 10. Single Pulse Maximum Power Dissipation

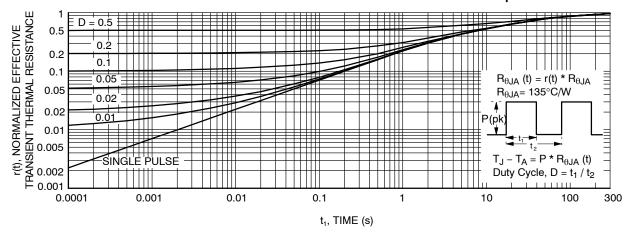
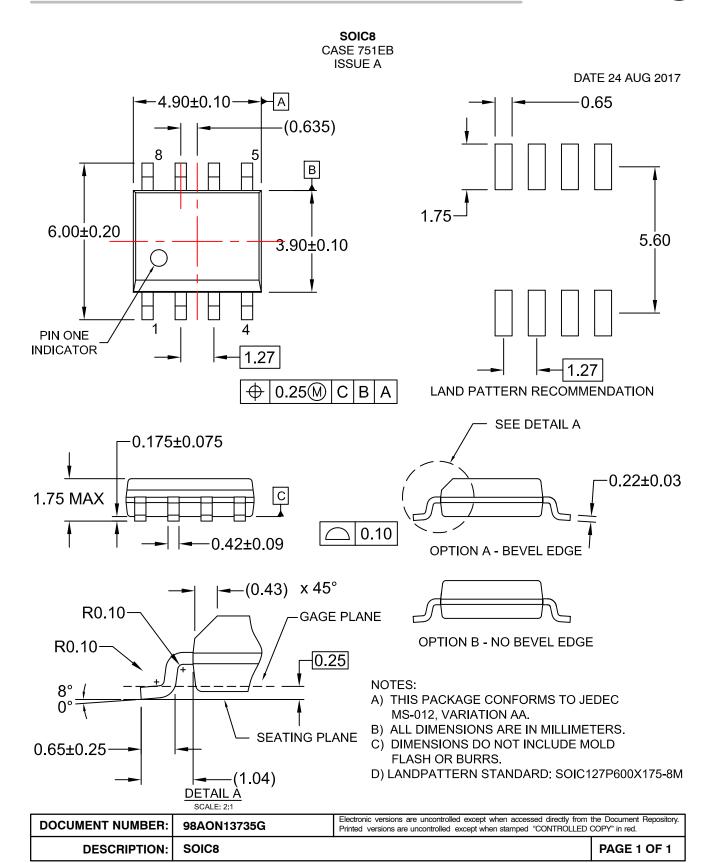



Figure 11. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales