Digital FET, N-Channel

FDV303N

General Description

These N-Channel enhancement mode field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is tailored to minimize on-state resistance at low gate drive conditions. This device is designed especially for application in battery circuits using either one lithium or three cadmium or NMH cells. It can be used as an inverter or for high-efficiency miniature discrete DC/DC conversion in compact portable electronic devices like cellular phones and pagers. This device has excellent on-state resistance even at gate drive voltages as low as 2.5 V.

Features

- 25 V, 0.68 A Continuous, 2 A Peak
 - $R_{DS(ON)} = 0.45 \Omega @ V_{GS} = 4.5 V$
 - $R_{DS(ON)} = 0.6 \Omega @ V_{GS} = 2.7 V$
- Very Low Level Gate Drive Requirements Allowing Direct Operation in 3 V Circuits, $V_{GS(th)} < 1 V$
- Gate–Source Zener for ESD Ruggedness, > 6 kV Human Body Model
- Compact Industry Standard SOT-23 Surface Mount Package
- This Device is Pb-Free, Halogen Free/BFR Free and is RoHS Compliant

ON Semiconductor®

www.onsemi.com

SOT-23 (TO-236) CASE 318-08 STYLE 21

indicating manufacturing location

303

Μ

* Date Code orientation and overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet

MOSFET MAXIMUM RATINGS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	FDV303N	Units
V _{DSS}	Drain-Source Voltage, Power Supply Voltage	25	V
V _{GSS}	Gate-Source Voltage, V _{IN}	8	V
۱ _D	Drain/Output Current – Continuous – Pulsed	0.68 2	A
PD	Maximum Power Dissipation	0.35	W
T _J , T _{STG}	Operating and Storage Temperature Range	–55 to 150	°C
ESD	Electrostatic Discharge Rating MIL–STD–883D Human Body Model (100 pf / 1500 Ω)	6.0	kV

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Units
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	357	°C/W

ORDERING INFORMATION

Device	Package	Shipping [†]
FDV303N	SOT-23 Case 318-08	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions		Тур	Max	Units
OFF CHA	ARACTERISTICS	·				
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	25			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temp. Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		26		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μΑ
		$T_{\rm J} = 55^{\circ}{\rm C}$			10	μΑ
I _{GSS}	Gate – Body Leakage Current	V _{GS} = 8 V, V _{DS} = 0 V			100	nA
ON CHA	RACTERISTICS (Note 1)					
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		-2.6		mV/°C
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	0.65	0.8	1	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 0.5 A		0.33	0.45	Ω
		T _J =125°C		0.52	0.8	1
		V _{GS} = 2.7 V, I _D = 0.2 A		0.44	0.6	1
I _{D(ON)}	On-State Drain Current	V _{GS} = 2.7 V, V _{DS} = 5 V	0.5			Α
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 0.5 A		1.45		S
DYNAMI	C CHARACTERISTICS		-	-		
C _{iss}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz		50		pF
C _{oss}	Output Capacitance	7		28		pF
C _{rss}	Reverse Transfer Capacitance	-		9		pF
SWITCH	ING CHARACTERISTICS (Note 1)	•	•	•	•	•
t _{D(on)}	Turn – On Delay Time	V_{DD} = 6 V, I_{D} = 0.5 A, V_{GS} = 4.5 V, R_{GEN} = 50 Ω		3	6	ns
	Turn On Bigg Time	-		0.5	10	20

יD(on)	Tan on Bolay Time		0	Ũ	110
tr	Turn – On Rise Time		8.5	18	ns
t _{D(off)}	Turn – Off Delay Time		17	30	ns
t _f	Turn – Off Fall Time		13	25	ns
Qg	Total Gate Charge	V_{DS} = 5 V, I _D = 0.5 A, V_{GS} = 4.5 V	1.64	2.3	nC
Q _{gs}	Gate-Source Charge		0.38		nC
Q _{gd}	Gate-Drain Charge		0.45		nC

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

ا _S	Maximum Continuous Drain-Source Diode Forward Current			0.3	А
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.5 A (Note 1)	0.83	1.2	V

1. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

Figure 4. On Resistance Variation with Gate-To- Source Voltage

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Figure 5. Transfer Characteristics

TYPICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted (continued)

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance Characteristics

Figure 10. Single Pulse Maximum Power Dissipation

Figure 11. Transient Thermal Response Curve

semi

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318**

ISSUE AU

DATE 14 AUG 2024

XXX = Specific Device Code М = Date Code

= Pb-Free Package .

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

MILLIMETERS						
DIM	MIN	NOM	МАХ			
А	0.89	1.00	1.11			
A1	0.01	0.06	0.10			
b	0.37	0.44	0.50			
С	0.08	0.14	0.20			
D	2.80	2.90	3.04			
E	1.20	1.30	1.40			
е	1.78	1.90	2.04			
L	0.30	0.43	0.55			
L1	0.35	0.54	0.69			
ΗE	2.10	2.40	2.64			
Т	0°		10°			

NOTES:

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS: 1.

2. MILLIMETERS.

MILLIME IERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE 3.

BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, 4. PROTRUSIONS, OR GATE BURRS.

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DESCRIPTION: SOT-23 (TO-236) 2.90x1.30x1.00 1.90P					
onsemi and ONSEMi are tradema the right to make changes without furth purpose, nor does onsemi assume an special, consequential or incidental do	onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

© Semiconductor Components Industries, LLC, 2019

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CÁSE 318** ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	Electronic versions are uncontrolled except when accessed directly from the Document Ru Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.3	PAGE 2 OF 2				

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>