

LPC546xx
Errata sheet LPC546xx
Rev. 2.1 — 23 October 2018 Errata sheet

Document information

Info Content

Keywords LPC54605J256BD100, LPC54605J512BD100, LPC54605J256ET100,
LPC54605J512ET100, LPC54606J256ET100, LPC54606J256BD100,
LPC54606J512ET100, LPC54606J512BD100, LPC54616J512ET100,
LPC54616J512BD100, LPC54605J256ET180, LPC54605J512ET180,
LPC54606256ET180, LPC54606J512BD208, LPC54607J256ET180,
LPC54607J512ET180, LPC54607J256BD208, LPC54608J512ET180,
LPC54608J512BD208, LPC54616J256ET180, LPC54616J512BD208,
LPC54618J512ET180, LPC54618J512BD208, LPC54628J512ET180

Abstract LPC546xx errata

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx

Revision history

Rev Date Description

2.1 20181023 • Added USB.15.

• Added IAP EEPROM.1

2.0 20180313 • USB.14.

• Changed title of Section 3.23 to Section 3.23 “SHA.1: Using MEMCTRL after DIGEST
Ready to include more blocks via Mastering does not clear DIGEST bit.”.

1.9 20180307 • USB_ROM.2.

1.8 20180226 • Updated work-around for Section 3.17 “USB.10: Automatic USB rate adjustment is not
functional when using multiple hubs”.

1.7 20171109 • Added LPC54605J256BD100, LPC54605J512BD100, LPC54605J256ET100,
LPC54605J512ET100 part numbers in Keywords.

• Added USB.13.

1.6 20170804 • USB_ROM.1.

1.5 20170526 • Added part number LPC54628J512ET180.

• Added SHA.1.

1.4 20170505 • Updated Table 2 “ Functional problems table”: changed heading row to Functional
problems.

1.3 20170420 • Added USB.11.

• Added USB.12.

• Added 100-pin devices.

• Updated Section 1 “Product identification”.

1.2 20170306 • Renamed title to LPC546xx.

• Updated work-around for USB.10: Use the external crystal instead of the FRO as
a clock source to the PLL.

1.1 20170224 • Removed S parts.

1 20161215 • Initial version.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 2 of 28

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
1. Product identification

The LPC546xx TFBGA180 and TFBGA100 packages have the following top-side
marking:

• First line: ES_LPC546xxJyyy

– yyy: flash size

• Second line: ET180 or ET100

• Third line: xxxxxxxxxxxx

• Fourth line: xxxyywwx[R]x

– yyww: Date code with yy = year and ww = week.

– xR = boot code version and device revision.

The LPC546xx LQFP208 and LQFP100 packages have the following top-side marking:

• First line: ES_LPC546xxJyyy

– yyy: flash size

• Second line: BD208 or BD100

• Third line: xxxxxxxxxxxx

• Fourth line: xxxyywwx[R]x

– yyww: Date code with yy = year and ww = week.

– xR = Boot code version and device revision.

Table 1. Device revision table

Revision identifier (R) Revision description

1A Initial device revision with Boot ROM version 19.1
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 3 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
2. Errata overview

Table 2. Functional problems table

Functional
problems

Short description Revision
identifier

Detailed
description

ADC.1 High current consumption in reduced low power modes when using ADC. ‘A’ Section 3.1

I2S.1 FIFO underflow interrupt not generated for I2S peripheral. ‘A’ Section 3.2

I2S.2 The Most Significant Bit (MSB) of I2S receive data is forced to 0 if DATALEN is
greater than 23.

‘A’ Section 3.3

I2C.1 The AUTOACK feature does not work reliably when the CPU system clock
frequency is three times or more than the peripheral clock to the I2C interface.

‘A’ Section 3.4

USART.1 USART receiver timeout feature is not supported. ‘A’ Section 3.5

USART.2 The USART receiver idle (RXIDLE) interrupt feature is not supported. ‘A’ Section 3.6

SDIO.1 In 4-bit mode, the upper unused data input functions must be selected on GPIO
pin.

‘A’ Section 3.7

USB.1 In USB high-speed device mode, the NBytes field does not decrement after
BULK OUT transfer.

‘A’ Section 3.8

USB.2 In USB high-speed device mode, the NBytes field is not correct after BULK IN
transfer.

‘A’ Section 3.9

USB.3 In USB high-speed device mode, the USB host detects a disconnect during L2
remote wake-up.

‘A’ Section 3.10

USB.4 The L2 remote wake-up signaling is not USB compliant. ‘A’ Section 3.11

USB.5 In USB full-speed host mode, linked list on done queue is broken. ‘A’ Section 3.12

USB.6 In USB high-speed device and high-speed host modes, the detection
handshaking is not working as per USB2.0 specification.

‘A’ Section 3.13

USB.7 In USB full-speed device mode, DEV_NEED_CLKST bit in USBCLKSTAT does
not go low when LPM token is acknowledged.

‘A’ Section 3.14

USB.8 In USB host mode, first ACK not recognized after remote wake-up. ‘A’ Section 3.15

USB.9 SE field for an ISO OUT start-split token is wrong when the data length is equal
to maximum packet size and when maximum packet size is less than or equal to
188.

‘A’ Section 3.16

USB.10 Automatic USB rate adjustment not functional when using multiple hubs. ‘A’ Section 3.17

USB.11 A glitch can occur in USB high speed host mode causing host to detect a
disconnect.

‘A’ Section 3.18

USB.12 USB host port can become disabled when entry into L1 suspend state collides
with transmission of any USB token.

‘A’ Section 3.19

USB.13 Resetting interrupt endpoint resets DATAx sequence to DATA.1. ‘A’ Section 3.20

USB.14 In USB full-speed device mode, the ROOT2 endpoint test fails. ‘A’ Section 3.21

USB.15 USB high-speed device in endpoint TX data corruption. ‘A’ Section 3.22

SHA.1 Using MEMCTRL after DIGEST Ready to include more blocks via Mastering
does not clear DIGEST bit.

‘A’ Section 3.23

USB_ROM.1 FRAME_INT is cleared if new SetConfiguration or USB_RESET are received. ‘A’ Section 3.24

USB_ROM.2 USB full-speed device fail in the Command/Data/Status Flow after bus reset and
bus re-enumeration.

‘A’ Section 3.25

IAP EEPROM.1 IAP EEPROM write requires user application to enable SYSCON EEPROM
clock before IAP call.

‘A’ Section 3.26
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 4 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx

Table 3. AC/DC deviations table

AC/DC
deviations

Short description Revision
identifier

Detailed
description

n/a n/a n/a n/a

Table 4. Errata notes

Note Short description Revision
identifier

Detailed
description

n/a n/a n/a n/a
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 5 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3. Functional problems detail

3.1 ADC.1: High current consumption in reduced low power modes when
using ADC.

Introduction:

The 12-bit ADC controller is available on all LPC546xx. parts. The ADC can measure the
voltage on any of the input signals on the analog input channel. For accurate voltage
readings, the digital pin function on the ADC input channel must be disabled by writing a 0
to the DIGIMODE bit in the related IOCON register. This enables the analog mode
functionality on the ADC input channel.

Problem:

For applications using the ADC, the current consumption could be higher than expected in
reduced power modes (deep-sleep and deep power-down modes) or when the ADC is
disabled using the PDRUNCFG register.

Work-around:

To prevent high current consumption, use the following steps in the software:

1. Following a chip reset, all 12 ADC input channels (ADC0_0 to ADC0_11) should be in
Digital Mode (DIGIMODE = 1) in the related IOCON registers until the configuration of
the ADC block is complete. See the Basic Configuration section in the LPC546xx.
12-bit ADC controller (ADC) chapter of the LPC546xx. User Manual.

2. After configuring the ADC, change only those pins that are used as ADC input
channels to Analog Mode (DIGIMODE = 0) in the related IOCON registers before
starting ADC conversions.

3. Before entering any reduced power mode (deep-sleep and deep power-down) or
before powering down the ADC block (by writing to the PDEN_ADC0 bit in the
PDRUNCFG register), the ADC input channel(s) must be changed back to Digital
Mode.

4. After waking up from the reduced power mode or when re-enabling the ADC block
(PDEN_ADC0 bit in the PDRUNCFG), the software must follow step 2 before starting
ADC conversions.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 6 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.2 I2S.1: FIFO underflow interrupt not generated for I2S peripheral

Introduction:

Multiple Flexcomm Interfaces are available in the LPC546xx. devices. Flexcomm
Interface 6 and Flexcomm Interface 7 can be configured for I2S peripheral function and
the data for all I2S traffic within one Flexcomm Interface uses the Flexcomm Interface
FIFO. During I2S data transfers, when the transmit FIFO is empty, a FIFO underflow
occurs and an interrupt is generated, which is flagged by the UNDERRUN bit in the I2S
FIFOSTAT register.

Problem:

When the FIFO underflow condition occurs, the interrupt from the I2S peripheral function
might not be generated and as a result, the UNDERRUN bit does not get set. This issue
does not affect the SPI and USART peripherals.

Work-around:

There is no work-around.

3.3 I2S.2: The Most Significant Bit (MSB) of I2S receive data is forced to
zero if DATALEN > 23

Introduction:

On the LPC546xx devices, the I2S function is included in Flexcomm Interface 6 and
Flexcomm Interface 7. Each of these Flexcomm Interfaces implements one I2S channel
pair. The Data Length (DATALEN) defines the number of data bits to be transmitted or
received for all I2S channel pairs.

Problem:

If the I2S interface is configured for DATALEN (in I2S CFG1 register) greater than 23
(25-bit data or greater), the MSB of any received data will be forced to 0. If DATALEN = 24
(25-bit data), bit 24 of received data will always be 0. If DATALEN = 31 (32-bit data), bit 31
of received data will always be 0. The issue occurs regardless of the I2S operating mode
(selected by MODE bits).

Work-around:

There is no work-around.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 7 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.4 I2C.1

Introduction:

In LPC546xx. devices, the I2C interface has an AUTOACK bit in the Slave Control
register. In the slave mode, when this bit is set, it will cause an I2C header, which matches
the slave address SLVADR0 and the direction set by the AUTOMATCHREAD to be
ACKed immediately. This is used with the DMA to allow processing of the data without
intervention.

Problem:

The AUTOACK feature does not work reliably when the CPU system clock frequency is
three times or more than the peripheral clock to the I2C interface.

Work-around:

The I2C peripheral clock frequency should be the same or half of the CPU system clock.

3.5 USART.1

Introduction:

A receiver timeout feature for the USART provides a means to get data left for a time in a
FIFO that has not reached its threshold to be transferred.

Problem:

The LPC546xx. devices do not support the USART receiver timeout feature.

Work-around:

Timer0 can be used as a USART RX timeout timer and Flexcomm0 as USART0
peripheral in loop back mode. See the technical note TN00013 for more details.

3.6 USART.2

Introduction:

In the USART peripheral, the receiver idle (RXIDLE) interrupt occurs when the RX
channel becomes idle.

Problem:

The LPC546xx. devices do not support the USART receiver idle (RXIDLE) interrupt
feature.

Work-around:

There is no work-around.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 8 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.7 SDIO.1: In 4-bit mode, the upper unused data input functions must be
selected on GPIO pin.

Introduction:

The LPC546xx. devices include a SDIO (Secure Digital I/O) interface that supports SD
cards with 1-bit, 4-bit, and 8-bit data mode operations. To operate in the 4-bit mode,
SD_D[0] to SD_D[3] functions must be selected on the respective GPIO pins using the
IOCON registers (bits 3:0).

Problem:

For the 4-bit mode to work successfully, four otherwise unused upper data bits (SD_D[4]
to SD_D[7]) must be functionally assigned to GPIO pins with pull-up resistor. These pins
do not need to be physically connected on the hardware.

Work-around:

The following software workaround must be implemented for the 4-bit mode to work.
Depending on the package (LQFP208 or TBGA180), signals SD_D[4] to SD_D[7] may be
mapped to multiple pins.

For the BGA180 package, program the IOCON registers to select the SD_[D4] to SD_D[7]
functions and to enable the on-chip pull-up resistors on the un-bonded GPIO pins:

1. Enable the SD_D[4] function and on-chip pull-up resistor (via IOCON) on pin
PIO4_29.

2. Enable the SD_D[5] function and on-chip pull-up resistor (via IOCON) on pin
PIO4_30.

3. Enable the SD_D[6] function and on-chip pull-up resistor (via IOCON) on pin
PIO4_31.

4. Enable the SD_D[7] function and on-chip pull-up resistor (via IOCON) on pin PIO5_0.

5. Enable SDIO interface to 4-bit mode.

For the LQFP208 package, program the IOCON registers to select the SD_[D4] to
SD_D[7] functions and to enable the on-chip pull-up resistors onto 4 unused GPIO pins:

1. Enable the SD_D[4] function and on-chip pull-up resistor (via IOCON) on either pin
PIO1_27, PIO3_16, or PIO4_29.

2. Enable the SD_D[5] function and on-chip pull-up resistor (via IOCON) on either pin
PIO1_28, PIO3_17, or PIO4_30.

3. Enable the SD_D[6] function and on-chip pull-up resistor (via IOCON) on either pin
PIO1_29, PIO3_18, or PIO4_31.

4. Enable the SD_D[7] function and on-chip pull-up resistor (via IOCON) on either pin
PIO1_30, PIO3_19, or PIO5_0.

5. Enable SDIO interface to 4-bit mode.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 9 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.8 USB.1: In USB high-speed device mode, the NBytes field does not
decrement after BULK OUT transfer

Introduction:

The LPC546xx. device family includes a USB high-speed interface (USB1) that can
operate in device mode at high-speed. The NBytes value represents the number of bytes
that can be received in the buffer.

Problem:

If the buffer length is less than the maximum packet size and if the application code does
not program the maximum packet size, the NByte value is not correct.

Work-around:

Program the NByte to the maximum packet size of that particular endpoint type. The
application code must calculate the received number of bytes by subtracting the NByte
value from the programming value. The software work-around is implemented on the SDK
software platform for the LPC546xx device family.

3.9 USB.2: In USB high-speed device mode, the NBytes field is not
correct after BULK IN transfer

Introduction:

The LPC546xx device family includes a USB high-speed interface (USB1) that can
operate in device mode at high-speed. When a packet is successfully transferred, the
hardware decrements the Nbytes value.

Problem:

The NBytes value is decremented with a wrong value when a packet is successfully
transmitted.

Work-around:

There is no work-around. For EP in transfer, the NByte value can be ignored after a
packet is transmitted.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 10 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.10 USB.3: In USB high-speed device mode, the USB host detects a
disconnect during L2 remote wake-up

Introduction:

The LPC546xx device family includes a USB high-speed interface (USB1) that can
operate in device mode at high-speed. The USB interface goes into L2 suspend state if
there is no activity in the USB bus for more than 3 ms and can wake up if there is
transmission from the host or via the device’s software initiated remote wake-up.

Problem:

When the LPC546xx device sends a L2 remote wake-up, an unexpected signal is
generated on the bus, which makes the USB host port to detect a disconnect.

Work-around:

To continue USB operation after L2 remote wake-up, the USB host must reset its port and
the LPC546xx device will be re-enumerated by the host.

3.11 USB.4: The L2 remote wake-up signaling is not USB compliant

Introduction:

The USB interface on the LPC546xx device family is USB certified by the USB-IF.

Problem:

The L2 remote wake-up feature is an optional feature and was not part of the USB
compliance testing.

Work-around:

There is no work-around.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 11 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.12 USB.5: In USB full-speed host mode, linked list on done queue is
broken

Introduction:

The LPC546xx device family includes a USB full-speed interface (USB0) that can operate
in host mode at full-speed. The completed TD must go on the Done queue.

Problem:

The NextTD field of a General Transfer Descriptor is not updated with the value of the
HcDoneHead register when the ConditionCode is not equal to 0x0 or 0x9.

The NextTD field of an Isochronous Transfer Descriptor is not updated with the value of
the HcDoneHead register when the ITD is completed.

Work-around:

The following work-arounds must be implemented for this problem.

1. Ignore the unused TD on the Done Queue. Use the SDK library to implement software
work-around.

2. Limiting the hub interrupt endpoint interval to be a maximum of twice the smallest
value of all other interrupt or isochronous endpoints.

3.13 USB.6: In USB high-speed device and high-speed host modes, the
detection handshaking does not work per the USB2.0 specification

Introduction:

See the USB2.0 specification for details regarding the USB High-speed Detection
Handshake protocol.

Problem:

In USB high-speed device and host modes, the detection handshake fails for the following
conditions:

Condition 1:

As a high-speed device, the LPC546xx does not see the HOST KJ sequence and as a
result, it does not recognize whether the HOST can support high-speed. Therefore, the
LPC546xx will behave only as a full-speed device instead of a high-speed device.

Condition 2:

As a high-speed host, the LPC546xx does not see the Device K and as a result, it does
not send the KJ sequence to the Device. Therefore, the LPC546xx will only behave as a
full-speed host instead of a high-speed host.

Work-around:

For condition 1, the software work-around is implemented on the SDK software platform
for the LPC546xx device and must be used to avoid this issue.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 12 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
For condition 2, the application software must use one of the timer peripherals (Multi-rate
timer, Repetitive Interrupt Timer, CTIMERS0-4) and use the following sequence:

1. Wait until a Port Connect interrupt is received.

2. Poll PSPD field (bits 21 to 20) in PORTSC1 register. If PSPD not equal to 00b, then
wait 100 ms to comply with section 7.1.7.3 of the USB 2.0 specification.

3. Write 0011b to PTC field (bits 19 to 16) in PORTSC1 register (start of USB bus
reset – SE0) and wait 250 s.

4. Start 7 ms timer.

5. Poll linestate field in PORTSC1 register (polls 3 times with 10 s delay) until timer
times-out or the following condition is TRUE:

5.1.0: If (all 3) linestate not equal to 00b, then (HS device attached):

5.1.1: Stop timer and restart 4 ms timer.

5.1.2: Poll linestate field in PORTSC1 register (polls 3 times with 2.5 s delay) until
timer times-out or the following condition is TRUE:

5.1.2.1: If (all 3) linestate is equal to 00b then:

a) Write 0010b to PTC field (bits 19 to 16) in PORTSC1 register and wait 50 s.

b) Write 0001b to PTC field and wait 50 s.

c) Repeat steps a and b 40 times.

d) Write 0011b to PTC field and wait 200 s.

e) Write 0101b to PTC field.

5.1.3 Schedule GetDeviceDescriptor request and wait on completion.

5.1.4 Write 0000b to PTC field and wait at least 5 s.

5.1.5 Initiate a USB bus reset by writing 1b to PR bit in PORTSC1 register.

5.2.0 If 7 ms timer times-out because linestate is continuously 00b, then (FS device
attached),

5.2.1 Wait an additional 4 ms.

5.2.2 Write 0000b to PTC field.

5.2.3 Schedule GetDeviceDescriptor request and initiate a USB bus reset.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 13 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.14 USB.7: In USB full-speed device mode, DEV_NEED_CLKST bit in
USBCLKSTAT does not go low when LPM token is acknowledged.

Introduction:

The LPC546xx device family includes a USB full-speed interface (USB0) that can operate
in device mode at full-speed. When used in L2 suspend mode, the NEEDCLK signal goes
LOW (USB0CLKSTAT register) and can be used as an indicator (USB0CLKSTAT register)
to reduce power by disabling the clock to the USB peripheral.

Problem:

In L1 suspend mode, the NEEDCLK signal does not go LOW, which prevents the ability to
disable the clock to the USB interface.

Work-around:

There is no work-around.

3.15 USB.8: In USB host mode, first ACK is not recognized after remote
wake-up

Introduction:

The LPC546xx device family includes a USB interface (USB1) that can operate in host
mode. The USB host interface features L2 suspend state and remote wake-up
acknowledgement from device.

Problem:

The LPC546xx (using port USB1) as a USB host does not recognize the first ACK after
remote wake-up from device and as a result, halts the PTD.

Work-around:

After the PTD is halted, the LPC546xx host should re-schedule the SETUP transaction a
second time to resume USB communication.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 14 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.16 USB.9: SE field for an ISO OUT start-split token is wrong when the
data length is equal to maximum packet size and when maximum
packet size is less than or equal to 188

Introduction:

The LPC546xx device family includes a USB high-speed interface (USB1) that can
operate in host mode at high-speed. The LPC546xx as a high-speed USB host must send
an ISO OUT start-split transaction where the data length 188 bytes or when the data
length is equal to maximum packet size. This transaction must have the SE field set to
ALL (=11b).

Problem:

When the LPC546xx as a high-speed USB host sends an ISO OUT start-split token and
the Number of Bytes to Transfer is equal to the MaxPacketSize, the SE field in the token is
set to incorrect value (BEGIN = 10b).

Work-around:

Software must program the MaxPacketLength field in the PTD to the value reported in the
siTD + 1. The software work-around is implemented on the SDK software platform for the
LPC546xx device family.

3.17 USB.10: Automatic USB rate adjustment is not functional when using
multiple hubs

Introduction:

Full-speed and low-speed signaling uses bit stuffing throughout the packet without
exception. If the receiver sees seven consecutive ones anywhere in the packet, then a bit
stuffing error has occurred, and the packet should be ignored.

The time interval just before an End of Packet (EOP) is a special case. The last data bit
before the EOP can become stretched by hub switching skews. This is known as dribble
and can lead to a situation where dribble introduces a sixth bit that does not require a bit
stuff. Therefore, the receiver must accept a packet where there are up to six full bit times
at the port with no transitions prior to the EOP.

Problem:

The LPC546xx devices use the start of an EOP for frequency measurements. This is not
functional when going through multiple hubs that introduce a dribble bit because of hub
switching skews. For this reason, the start of the EOP cannot be used for frequency
measurements for automatic USB rate adjustment (by setting USBCLKADJ in FROCTRL
register). The problem does not occur when a single hub is used.

Work-around:

Use the FRO calibration library provided in TN00032. This library allows the application to
have a crystal-less USB device operation in full-speed mode.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 15 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.18 USB.11: In USB high speed host mode, a glitch can occur causing
host to detect a disconnect

Introduction:

The LPC546xx includes a USB High Speed interface (USB1) that can operate in host
mode at high speed. The USB high speed host interface features L1 and L2 suspend
state. A device can be put in L1 suspend mode (when L1 is supported by the device)
when the host controller (LPC546xx) generates an LPM Token to enter the L1 state. A
host controller (LPC546xx) can put the device in L2 suspend mode by keeping the USB
lines idle for more than 3 milliseconds. A suspended device wakes up if there is resume
signaling from the host (host-initiated wake-up).

Problem:

When the LPC546xx (high speed host) is connected to a high speed device, at the end of
a resume a glitch can occur on the USB lines. When this glitch is generated, the USB HS
host detects a disconnect and the USB host port is disabled.

Work-around:

There is no software work-around to prevent the host disconnect.

The software can generate a USB bus reset after the host detects a disconnect and a
reconnect by the device (CCS and CSC bits both set to 1), followed by a re-enumeration
of the USB device. The software work-around is implemented on the SDK software
platform for the LPC546xx.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 16 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.19 USB.12: The USB host port can become disabled when entry into L1
suspend state collides with transmission of any USB token.

Introduction:

The LPC546xx includes a USB high speed interface (USB1) that can operate in host
mode at high speed. The USB high speed host interface features L1 suspend state. A
device can be put in L1 suspend mode (when L1 is supported by the device) when the
host controller (LPC546xx) generates an LPM Token to enter the L1 state. A host
controller will put a device in L1 suspend state if it has no pending transactions to the USB
device.

Problem:

When the LPC546xx (high speed host) is programmed to send out the LPM Token at the
same time when it needs to transmit another USB token, the port can become disabled.

Work-around:

The software work-around is to make sure that there are no PTD structures on the
asynchronous or periodic lists with the valid bit set to 1b. It must also make sure that
setting the USB port on the host controller in L1 suspend mode is done at the beginning of
the (micro-) frame. For this, the USB software can wait until a Start-of-Frame interrupt is
received to program the port entering L1 suspend mode.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 17 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.20 USB.13: Resetting interrupt endpoint resets DATAx sequence to
DATA.1

Introduction:

The LPC546xx includes a USB High Speed interface (USB1) that can operate in device
mode at high speed. The T bit in command/status list determines if the endpoint type is
generic endpoint or periodic endpoint. When the endpoint type is set to periodic, the
RF/TV bit in command/status list determines if the endpoint type is isochronous endpoint
or interrupt endpoint. When the TR bit in command/status list is set to ‘1’, the toggle value
will set to the value indicated in the RF/TV bit.

Problem:

When the endpoint type is set to interrupt with T bit as ‘1’ and RF/TV bit as ‘1’, the data
toggle for the interrupt endpoint with TR bit as ‘1’ resets to DATA1.

Work-around:

For applications that have strict requirements of the data toggle value, the following is the
the software work-around:

1. Set INTONNAK_AO and INTONNAK_AI bits to ‘1’ in the Device Command/Status
register.

2. Set A=0, TR=1, RF/TV=0, T=0 (this will force the device to return a NAK handshake
and reset the internal toggle value to zero).

3. Wait until an interrupt is received. Read the Endpoint Toggle register and check the
value of the endpoint toggle. If the toggle is reset to ‘0’, then go to step 4 else wait for
the next interrupt.

4. Set A=1, TR=0, RF/TV=1, T=1 (the endpoint is back to the normal operation)

The result of this work-around is when an endpoint is reset, a NAK handshake is returned
on the first received token.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 18 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.21 USB.14: In USB full-speed device mode, the ROOT2 endpoint test
fails

Introduction:

The LPC546xx includes a USB full speed interface (USB0) that can operate in device
mode at full speed. It supports 10 physical (5 logical) endpoints including control
endpoints. The device should not respond to those endpoints which are not supported.

Problem:

The device NAKed the OUT token addressed to an endpoint that is not present on the
device causing the ROOT2 endpoint test to fail.

Work-around:

There is no work-around.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 19 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.22 USB.15: USB high-speed device in endpoint TX data corruption

Introduction:

The LPC546xx includes a USB high-speed interface (USB1) that can operate in device
mode at high-speed. The endpoint type can be configured as control, interrupt, bulk, and
isochronous to their corresponding maximum packet sizes of 64, 1024, 512, and 1024
bytes.

Problem:

For all endpoint types and TX (IN) transfer, the first byte of the transfer data is changed to
0 if all the following conditions are met:

• A TX (IN) transfer happens after a RX (OUT) transfer.

• The RX (OUT) transfer length is 4 + N*16 (N0) bytes.

The TX (IN) transfer and the RX (OUT) transfer can be on either the same endpoint or
different endpoint.

Work-around:

A NAKed Tx (IN) transfer in-between the RX (OUT) and TX (IN) transfers solves the
issue.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 20 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.23 SHA.1: Using MEMCTRL after DIGEST Ready to include more blocks
via Mastering does not clear DIGEST bit.

Introduction:

The LPC546xx includes a SHA hash block to compute SHA1 and SHA2-256 hash digests
on flash images or messages in RAM. For maximum performance and ease of use, the
hash block includes a master on the internal buses of the chip to read multiple blocks of
memory while hashing, without involvement of the processor. This mastering model
permits hashing up to 128 K bytes of memory (Flash, RAM, or SPI Flash).

Problem:

If the application uses the mastering on up to 128 K bytes and then uses it for additional
blocks (without starting new), the DIGEST (digest ready) status does not clear when
starting the next sequence via mastering. If the processor or DMA is used for the
additional blocks, the DIGEST status is cleared.

Work-around:

If the purpose for the additional block(s) is to hash the last block (with padding and
length), then the processor or DMA may be used to write the 16 words via INDATA, and
the DIGEST status will clear when the 1st word is written.
If the purpose for additional blocks is to do a large number of blocks (for example, after
doing 128 K, another 64 K is to be hashed), then the 1st block may be started by the
processor (that is, the processor writes the 16 words to INDATA) followed by configuring
MEMADDR and MEMCTRL for the remaining blocks. The MEMCTRL should be written
within 64 cycles of writing the last word to INDATA to ensure DIGEST is 0.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 21 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.24 USB_ROM.1: FRAME_INT is cleared if new SetConfiguration or
USB_RESET are received.

Introduction:

In the USB ROM API, the function call EnableEvent can be used to enable and disable
FRAME_INT.

Problem:

When the FRAME_INT is enabled through the USB ROM API call:

ErrorCode_t(* USBD_HW_API::EnableEvent)(USBD_HANDLE_T hUsb, uint32_t EPNum, uint32_t
event_type, uint32_t enable),

the FRAME_INT is cleared if new SetConfiguration or USB_RESET are received.

Work-around:

Implement the following software work-around in the ISR to ensure that the FRAME_INT
is enabled:

void USB_IRQHandler(void)
{
USBD_API->hw->EnableEvent(g_hUsb, 0, USB_EVT_SOF, 1);
USBD_API->hw->ISR(g_hUsb);
}

ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 22 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.25 USB_ROM.2: USB full-speed device fail in the Command/Data/Status
Flow after bus reset and bus re-enumeration

Introduction:

The LPC546xx device family includes a USB full-speed interface that can operate in
device mode and also, includes USB ROM based drivers. A Bulk-Only Protocol
transaction begins with the host sending a CBW to the device and attempting to make the
appropriate data transfer (In, Out or none). The device receives the CBW, checks and
interprets it, attempts to satisfy the request of the host, and returns status via a CSW.

Problem:

When the device fails in the Command/Data/Status Flow, and the host does a bus reset /
bus re-enumeration without issuing a Bulk-Only Mass Storage Reset, the USB ROM
driver does not re-initialize the MSC variables. This causes the device to fail in the
Command/Data/Status Flow after the bus reset / bus re-enumeration.

Work-around:

Implement the following software work-around to re-initialize the MSC variables in the
USBD stack.

void *g_pMscCtrl;

ErrorCode_t mwMSC_Reset_workaround(USBD_HANDLE_T hUsb)

{

((USB_MSC_CTRL_T *)g_pMscCtrl)->CSW.dSignature = 0;

((USB_MSC_CTRL_T *)g_pMscCtrl)->BulkStage = 0;

return LPC_OK;

}

ErrorCode_t mscDisk_init(USBD_HANDLE_T hUsb, USB_CORE_DESCS_T *pDesc,
USBD_API_INIT_PARAM_T *pUsbParam)

{ USBD_MSC_INIT_PARAM_T msc_param;

ErrorCode_t ret = LPC_OK;

memset((void *) &msc_param, 0, sizeof(USBD_MSC_INIT_PARAM_T));

msc_param.mem_base = pUsbParam->mem_base;

msc_param.mem_size = pUsbParam->mem_size;

g_pMscCtrl = (void *)msc_param.mem_base;

ret = USBD_API->msc->init(hUsb, &msc_param);

/* update memory variables */

pUsbParam->mem_base = msc_param.mem_base;

pUsbParam->mem_size = msc_param.mem_size;
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 23 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
return ret;

}

usb_param.USB_Reset_Event = mwMSC_Reset_workaround;

ret = USBD_API->hw->Init(&g_hUsb, &desc, &usb_param);
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 24 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
3.26 IAP EEPROM.1: IAP EEPROM write requires user application to
enable SYSCON EEPROM clock before IAP call

Introduction:

All LPC546xx devices include ROM-based services for programming and reading the
flash memory in addition to other functions. In-Application (IAP) programming performs
erase and write operation on the on-chip flash memory as directed by the end-user
application code. LPC546xx supports IAP Write EEPROM page command that writes
given data in the provided memory to a page of EEPROM

Problem:

The LPC546xx IAP EEPROM Write page API does not enable the EEPROM clock for the
write operation. This causes the EEPROM write operation to fail when using the IAP API.
This problem does not occur for IAP Read EEPROM page command.

Work-around:

Enable the EEPROM clock (set bit 9) in AHBCLKCTRL0 register (offset 0x200) of
SYSCON before calling the IAP EEPROM write function.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 25 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
4. AC/DC deviations detail

No known errata.

5. Errata notes

No known errata.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 26 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

6.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
ES_LPC546xx All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Errata sheet Rev. 2.1 — 23 October 2018 27 of 28

NXP Semiconductors ES_LPC546xx
Errata sheet LPC546xx
7. Contents

1 Product identification . 3

2 Errata overview . 4

3 Functional problems detail 6
3.1 ADC.1: High current consumption in reduced low

power modes when using ADC. 6
3.2 I2S.1: FIFO underflow interrupt not generated for

I2S peripheral . 7
3.3 I2S.2: The Most Significant Bit (MSB) of I2S

receive data is forced to zero if DATALEN > 23 7
3.4 I2C.1 . 8
3.5 USART.1 . 8
3.6 USART.2 . 8
3.7 SDIO.1: In 4-bit mode, the upper unused data

input functions must be selected on GPIO pin. 9
3.8 USB.1: In USB high-speed device mode, the

NBytes field does not decrement after BULK OUT
transfer . 10

3.9 USB.2: In USB high-speed device mode, the
NBytes field is not correct after BULK IN transfer.
10

3.10 USB.3: In USB high-speed device mode, the USB
host detects a disconnect during L2 remote
wake-up . 11

3.11 USB.4: The L2 remote wake-up signaling is not
USB compliant . 11

3.12 USB.5: In USB full-speed host mode, linked list on
done queue is broken 12

3.13 USB.6: In USB high-speed device and high-speed
host modes, the detection handshaking does not
work per the USB2.0 specification 12

3.14 USB.7: In USB full-speed device mode,
DEV_NEED_CLKST bit in USBCLKSTAT does
not go low when LPM token is acknowledged. 14

3.15 USB.8: In USB host mode, first ACK is not
recognized after remote wake-up 14

3.16 USB.9: SE field for an ISO OUT start-split token is
wrong when the data length is equal to maximum
packet size and when maximum packet size is
less than or equal to 188 15

3.17 USB.10: Automatic USB rate adjustment is not
functional when using multiple hubs. 15

3.18 USB.11: In USB high speed host mode, a glitch
can occur causing host to detect a disconnect 16

3.19 USB.12: The USB host port can become disabled
when entry into L1 suspend state collides with
transmission of any USB token. 17

3.20 USB.13: Resetting interrupt endpoint resets
DATAx sequence to DATA.1 18

3.21 USB.14: In USB full-speed device mode, the
ROOT2 endpoint test fails 19

3.22 USB.15: USB high-speed device in endpoint TX
data corruption . 20

3.23 SHA.1: Using MEMCTRL after DIGEST Ready to
include more blocks via Mastering does not clear
DIGEST bit. . 21

3.24 USB_ROM.1: FRAME_INT is cleared if new
SetConfiguration or USB_RESET are received. .
22

3.25 USB_ROM.2: USB full-speed device fail in the
Command/Data/Status Flow after bus reset and
bus re-enumeration . 23

3.26 IAP EEPROM.1: IAP EEPROM write requires
user application to enable SYSCON EEPROM
clock before IAP call 25

4 AC/DC deviations detail 26

5 Errata notes . 26

6 Legal information . 27
6.1 Definitions . 27
6.2 Disclaimers . 27
6.3 Trademarks . 27

7 Contents. 28
© NXP Semiconductors N.V. 2018. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 23 October 2018

Document identifier: ES_LPC546xx

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Product identification
	2. Errata overview
	3. Functional problems detail
	3.1 ADC.1: High current consumption in reduced low power modes when using ADC.
	Introduction:
	Problem:
	Work-around:
	3.2 I2S.1: FIFO underflow interrupt not generated for I2S peripheral
	Introduction:
	Problem:
	Work-around:
	3.3 I2S.2: The Most Significant Bit (MSB) of I2S receive data is forced to zero if DATALEN > 23
	Introduction:
	Problem:
	Work-around:
	3.4 I2C.1
	Introduction:
	Problem:
	Work-around:
	3.5 USART.1
	Introduction:
	Problem:
	Work-around:
	3.6 USART.2
	Introduction:
	Problem:
	Work-around:
	3.7 SDIO.1: In 4-bit mode, the upper unused data input functions must be selected on GPIO pin.
	Introduction:
	Problem:
	Work-around:
	3.8 USB.1: In USB high-speed device mode, the NBytes field does not decrement after BULK OUT transfer
	Introduction:
	Problem:
	Work-around:
	3.9 USB.2: In USB high-speed device mode, the NBytes field is not correct after BULK IN transfer
	Introduction:
	Problem:
	Work-around:
	3.10 USB.3: In USB high-speed device mode, the USB host detects a disconnect during L2 remote wake-up
	Introduction:
	Problem:
	Work-around:
	3.11 USB.4: The L2 remote wake-up signaling is not USB compliant
	Introduction:
	Problem:
	Work-around:
	3.12 USB.5: In USB full-speed host mode, linked list on done queue is broken
	Introduction:
	Problem:
	Work-around:
	3.13 USB.6: In USB high-speed device and high-speed host modes, the detection handshaking does not work per the USB2.0 specification
	Introduction:
	Problem:
	Work-around:
	3.14 USB.7: In USB full-speed device mode, DEV_NEED_CLKST bit in USBCLKSTAT does not go low when LPM token is acknowledged.
	Introduction:
	Problem:
	Work-around:
	3.15 USB.8: In USB host mode, first ACK is not recognized after remote wake-up
	Introduction:
	Problem:
	Work-around:
	3.16 USB.9: SE field for an ISO OUT start-split token is wrong when the data length is equal to maximum packet size and when maximum packet size is less than or equal to 188
	Introduction:
	Problem:
	Work-around:
	3.17 USB.10: Automatic USB rate adjustment is not functional when using multiple hubs
	Introduction:
	Problem:
	Work-around:
	3.18 USB.11: In USB high speed host mode, a glitch can occur causing host to detect a disconnect
	Introduction:
	Problem:
	Work-around:
	3.19 USB.12: The USB host port can become disabled when entry into L1 suspend state collides with transmission of any USB token.
	Introduction:
	Problem:
	Work-around:
	3.20 USB.13: Resetting interrupt endpoint resets DATAx sequence to DATA.1
	Introduction:
	Problem:
	Work-around:
	3.21 USB.14: In USB full-speed device mode, the ROOT2 endpoint test fails
	Introduction:
	Problem:
	Work-around:
	3.22 USB.15: USB high-speed device in endpoint TX data corruption
	Introduction:
	Problem:
	Work-around:
	3.23 SHA.1: Using MEMCTRL after DIGEST Ready to include more blocks via Mastering does not clear DIGEST bit.
	Introduction:
	Problem:
	Work-around:
	3.24 USB_ROM.1: FRAME_INT is cleared if new SetConfiguration or USB_RESET are received.
	Introduction:
	Problem:
	Work-around:
	3.25 USB_ROM.2: USB full-speed device fail in the Command/Data/Status Flow after bus reset and bus re-enumeration
	Introduction:
	Problem:
	Work-around:
	3.26 IAP EEPROM.1: IAP EEPROM write requires user application to enable SYSCON EEPROM clock before IAP call
	Introduction:
	Problem:
	Work-around:

	4. AC/DC deviations detail
	5. Errata notes
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. Contents

