onsemi

MARKING DIAGRAMS

Low-Voltage CMOS Hex Buffer with Open Drain Outputs

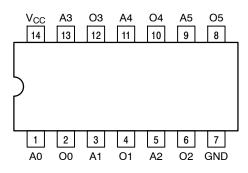
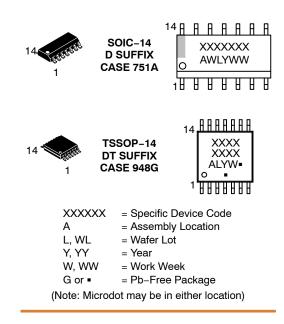
With 5 V-Tolerant Inputs

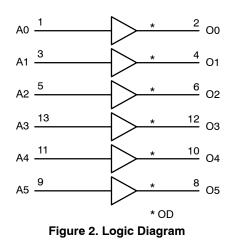
MC74LCX07

The MC74LCX07 is a high performance hex buffer operating from a 1.65 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers. These LCX devices have open drain outputs which provide the ability to set output levels, or do active–HIGH AND or active–LOW OR functions. A V_I specification of 5.5 V allows MC74LCX07 inputs to be safely driven from 5.0 V devices.

Features

- Designed for 1.65 to 5.5 V V_{CC} Operation
- 5.0 V Tolerant Inputs/Outputs
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Output Sink Capability @ 3.0 V
- Near Zero Static Supply Current (10 µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 100 mA
- Wired-OR, Wired-AND
- Output Level Can Be Set Externally Without Affecting Speed of Device
- ESD Performance: Human Body Model >2000 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Figure 1. Pinout: 14-Lead (Top View)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MC74LCX07

PIN NAMES

Pins	Function
An	Data Inputs
On	Outputs

TRUTH TABLE

An	On
L	L
H	Z

MAXIMUM RATINGS

Symbol	Parar	neter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
VI	DC Input Voltage (Note 1)		-0.5 to +6.5	V
Vo	DC Output Voltage (Note 1)	Active-Mode (High or Low State) Tri-State Mode Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _I < GND	-50	mA
I _{OK}	DC Output Diode Current	V _O < GND	-50	mA
Ι _Ο	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Gro	und Pin	±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 1	0 secs	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SOIC-14 QFN14 TSSOP-14	116 130 150	°C/W
P _D	Power Dissipation in Still Air at 125°C	SOIC-14 QFN14 TSSOP-14	1077 962 833	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 N/A	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. I_O absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7.
3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A

(Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	1.65 1.5	3.3 3.3	5.5 5.5	V
VI	Digital Input Voltage		0	-	5.5	V
Vo	Output Voltage	Active Mode (High or Low State) Tri-State Mode Power Down Mode (V _{CC} = 0 V)	0 0 0	- - -	V _{CC} 5.5 5.5	V
T _A	Operating Free-Air Temperature		-40	-	+125	°C
t _r , t _f	Input Rise or Fall Rate	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 1.65 \; V \; to \; 1.95 \; V \\ V_{CC} = 2.3 \; V \; to \; 2.7 \; V \\ V_I \; \text{from 0.8 } V \; to \; 2.0 \; V, \; V_{CC} = 3.0 \; V \\ V_{CC} = 4.5 \; V \; to \; 5.5 \; V \end{array}$	0 0 0 0	- - - -	20 20 10 5	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

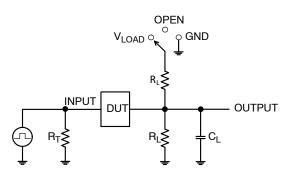
				T _A = -40°	C to +85°C	$T_A = -40^{\circ}C$	to +125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Мах	Unit
V _{IH}	HIGH Level Input Voltage		1.65 – 1.95	0.65 x V _{CC}	-	0.65 x V _{CC}	-	V
			2.3 – 2.7	1.7	-	1.7	-	
			3.0 - 3.6	2.0	-	2.0	-	
			4.5 – 5.5	0.70 x V _{CC}	_	0.70 x V _{CC}	-	
V _{IL}	LOW Level Input Voltage		1.65 – 1.95	-	0.35 x V _{CC}	-	0.35 x V _{CC}	V
			2.3 – 2.7	-	0.7	-	0.7	
			3.0 - 3.6	-	0.8	-	0.8	
			4.5 – 5.5	-	0.30 x V _{CC}	-	0.30 x V _{CC}	
V _{OL}	Low-Level Output Voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						V
	vollage	I _{OL} = 100 μA	1.65 to 5.5	-	0.1	-	0.1	
		$I_{OL} = 4 \text{ mA}$	1.65 2.3	-	0.24 0.3	-	0.24 0.3	
		l _{OL} = 8 mA l _{OL} = 12 mA	2.3	_	0.3	-	0.3	
		$I_{OL} = 16 \text{ mA}$	3.0	_	0.4	_	0.4	
		$I_{OL} = 24 \text{ mA}$	3.0	_	0.55		0.55	
		I _{OL} = 32 mA	4.5	_	0.6	_	0.6	
lį	Input Leakage Current	$V_{\rm I} = 0$ to 5.5 V	3.6	-	±5.0	-	±5.0	μA
I _{OFF}	Power Off Leak- age Current	V _I = 5.5 V or V _O = 5.5 V	0	_	10	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{I} = 5.5 V \text{ or GND}$	3.6	-	10	-	10	μA
ΔI_{CC}	Increase in I _{CC}	One input at V _{CC} – 0.6 V,	2.3 to 3.6	-	500	-	500	μA
	per Input	other inputs at V_{CC} or GND	4.5 to 5.5	-	1.0	-	1.0	mA
		One input at 3.125 V, other inputs at V_{CC} or GND	5.25	-	10	-	10	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

MC74LCX07

AC ELECTRICAL CHARACTERISTICS

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		$^{\circ}C$ T _A = -40°C to +125°C		
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Max	Unit
t _{PLZ} , t _{PZL}	t _{PLZ} , t _{PZL} Propagation Delay, Input to Output		1.65 to 1.95	-	6.5	-	6.5	ns
			2.3 to 2.7	-	3.8	-	3.8	
			2.7	-	3.7	-	3.7	
			3.0 to 3.6	-	3.0	-	3.3	
			4.5 to 5.5	-	2.7	-	2.7	


DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 5)	$ \begin{array}{l} V_{CC} = 3.3 \text{ V}, \ C_L = 50 \text{ pF}, \ V_{IH} = 3.3 \text{ V}, \ V_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V}, \ C_L = 30 \text{ pF}, \ V_{IH} = 2.5 \text{ V}, \ V_{IL} = 0 \text{ V} \end{array} $		0.9 0.7		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 5)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V V_{CC} = 2.5 V, C_L = 30 pF, V_{IH} = 2.5 V, V_{IL} = 0 V		-0.8 -0.6		V

Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

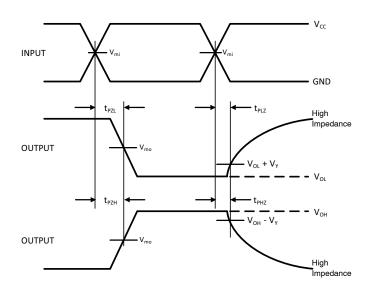
Symbol	Parameter	Condition	Тур	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZH}	GND

 C_{L} includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f = 1 MHz

10%

tрн


 t_{PLH}

t_r = 2.5 ns

INPUT

OUTPUT

OUTPUT

t_f = 2.5 ns

10%

t_{PLH}

t_{PHL}

 I_{cc}

GND

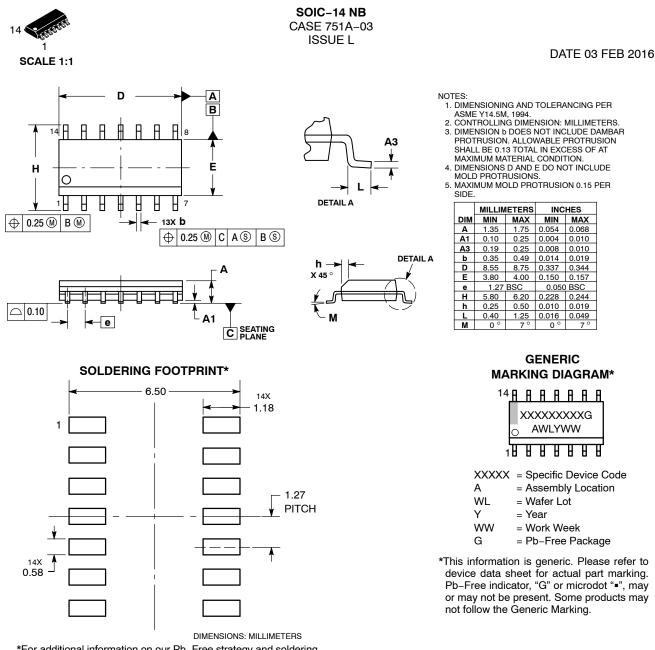
V_{OH}

V_o

V_{OH}

Vol

V _{CC} , V	R_{L}, Ω	C _L , pF	V _{LOAD}	V _m , V	V _Y , V
1.65 to 1.95	500	30	$2 \times V_{CC}$	V _{CC} /2	0.15
2.3 to 2.7	500	30	$2 \times V_{CC}$	V _{CC} /2	0.15
2.7	500	50	6 V	1.5	0.3
3.0 to 3.6	500	50	6 V	1.5	0.3
4.5 to 5.5	500	50	$2 \times V_{CC}$	V _{CC} /2	0.3


ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
MC74LCX07DG	LCX07G	SOIC-14	55 Units / Rail
MC74LCX07DR2G	LCX07G	SOIC-14	2500 / Tape & Reel
MC74LCX07DTR2G	LCX 07	TSSOP-14	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

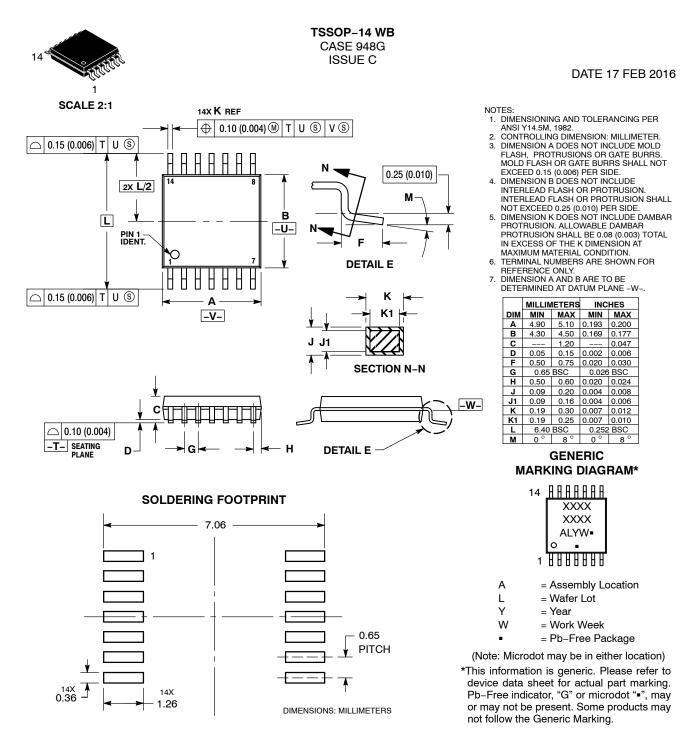
 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi axis me any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016


STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B	ASB42565B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER: 98ASH70246A Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: TSSOP-14 WB PAGE					
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular					

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>