

Inverting Octal 3-STATE Buffer, Octal 3-STATE Buffer MM74HC540, MM74HC541

General Description

The MM74HC540 and MM74HC541 3-STATE buffers utilize advanced silicon-gate CMOS technology. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. Both devices have a fanout of 15 LS-TTL equivalent inputs.

The MM74HC540 is an inverting buffer and the MM74HC541 is a non-inverting buffer. The 3-STATE control gate operates as a two-input NOR such that if either $\overline{G1}$ or $\overline{G2}$ are HIGH, all eight outputs are in the high-impedance state.

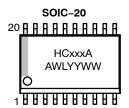
In order to enhance PC board layout, the MM74HC540 and MM74HC541 offers a pinout having inputs and outputs on opposite sides of the package. All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

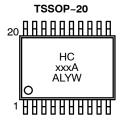
Features

- Typical Propagation Delay: 12 ns
- 3-STATE Outputs for Connection to System Buses
- Wide Power Supply Range: 2-6 V
- Low Quiescent Current: 160 μA Maximum (74HC Series)
- Output Current: 6 mA
- These are Pb-Free Devices

SOIC-20 WB CASE 751D-05

SOIC-20, 300 mils CASE 751BJ-01




TSSOP-20 WB CASE 948E

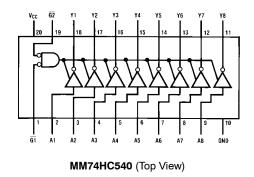
TSSOP-20, 4.4x6.5 CASE 948AQ-01

MARKING DIAGRAMS

HCxxxA = Specific Device Code

x = 540, 541

A = Assembly Location WL, L = Wafer Lot Number


Y = Year WW. YW = Work Week

1

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

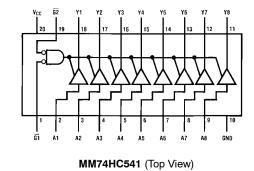


Figure 1. Connection Diagrams

(Pin Assignments for SOIC and TSSOP)

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Rating	Value	Unit	
V _{CC}	Supply Voltage		−0.5 to +7.0 V	V
V _{IN}	DC Input Voltage	-0.5 to V _{CC} +0.5 V	V	
V _{OUT}	DC Output Voltage	-0.5 to V _{CC} +0.5 V	V	
I _{CD}	Clamp Diode Current	±20	mA	
I _{OUT}	DC Output Current, per pin	±35	mA	
I _{CC}	DC V _{CC} or GND Current, per pin		±70	mA
T _{STG}	Storage Temperature Range		−65 to +150	°C
P _D	Power Dissipation Note 2		600	mW
	S. O. Package only		500	mW
T _L	Lead Temperature (Soldering 10 seconds)	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Supply Voltage		2	6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage		0	V _{CC}	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise or Fall Times V _{CC} = 2.0 V		-	1000	ns
	V _{CC} = 4.5 V		-	500	ns
		V _{CC} = 6.0 V	-	400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} Unless otherwise specified all voltages are referenced to ground.

^{2.} Power dissipation temperature derating – plastic "N" package: 12 mW/°C from 65°C to 85°C.

DC ELECTRICAL CHARACTERISTICS (Note 3)

				T _A =	25°C	T _A = −40 to 85°C	T _A = -55 to 125°C	
Symbol	Parameter	Conditions	V _{CC}	Typ Guaranteed Limits		Unit		
V _{IH}	Minimum HIGH Level Input Voltage		2.0 V 4.5 V 6.0 V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	> >
V _{IL}	Maximum LOW Level Input Voltage		2.0 V 4.5 V 6.0 V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OH}	Minimum HIGH Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu\text{A}$	2.0 V 4.5 V 6.0 V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5 V 6.0 V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum LOW Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu\text{A}$	2.0 V 4.5 V 6.0 V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5 V 6.0 V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0 V		±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum 3-STATE Output Leakage Current	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $\overline{G} = V_{IH}$ $V_{OUT} = V_{CC} \text{ or GND}$	6.0 V		±0.5	±5	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0 V		8.0	80	160	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5 \text{ V}, T_A = 25^{\circ}C, t_r = t_f = 6 \text{ ns})$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay (540)	C _L = 45 pF	12	18	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay (541)	C _L = 45 pF	14	20	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 45 \text{ pF}$	17	28	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 5 \text{ pF}$	15	25	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} For a power supply of 5 V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC ELECTRICAL CHARACTERISTICS

(V_{CC} = 2.0 V to 6.0. V, C_L = 50 pF, t_r = t_f = 6 ns, unless otherwise specified)

				T _A =	25°C	T _A = −40 to 85°C	T _A = -55 to 125°C	
Symbol	Parameter	Conditions	v _{cc}	Тур		Guaranteed L	imits	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay (540)	C _L = 50 pF C _L = 150 pF	2.0 V 2.0 V	55 83	100 150	126 190	149 224	ns ns
		C _L = 50 pF C _L = 150 pF	4.5 V 4.5 V	12 22	20 30	25 38	30 45	ns ns
		C _L = 50 pF C _L = 150 pF	6.0 V 6.0 V	11 18	17 26	21 32	25 38	ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay (541)	C _L = 50 pF C _L = 150 pF	2.0 V 2.0 V	58 83	115 165	145 208	171 246	ns ns
		C _L = 50 pF C _L = 150 pF	4.5 V 4.5 V	14 17	23 33	29 42	34 49	ns ns
		C _L = 50 pF C _L = 150 pF	6.0 V 6.0 V	11 14	20 28	25 35	29 42	ns ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0 V 4.5 V	75 100	150 200	189 252	224 298	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5 V 4.5 V	15 30	30 40	38 50	45 60	ns ns
		C _L = 50 pF C _L = 150 pF	6.0 V 6.0 V	13 17	26 34	32 43	38 51	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0 V 4.5 V 6.0 V	75 15 13	150 30 26	189 38 32	224 45 38	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L = 50 pF	2.0 V 4.5 V 6.0 V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 4)	$\overline{G} = V_{IH}$ $\overline{G} = V_{IL}$		10 50				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

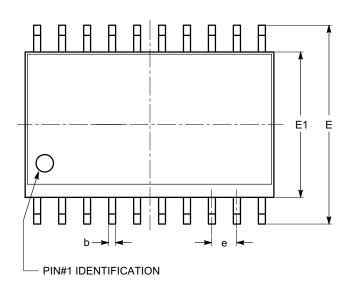
4. C_{PD} determines the no load dynamic power consumption, P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}, and the no load dynamic current consumption, I_S = C_{PD} V_{CC} f + I_{CC}.

ORDERING INFORMATION

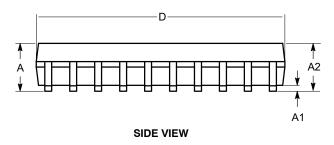
Device	Package	Shipping [†]
MM74HC540WM	SOIC-20 WB	38 Units / Tube
MM74HC540WMX	(Pb-Free and Halide Free)	1000 / Tape & Reel
MM74HC540MTCX	TSSOP-20 WB (Pb-Free)	2500 / Tape & Reel
MM74HC541WM	SOIC-20 WB (Pb-Free and Halide Free)	38 Units / Tube
MM74HC541WMX	SOIC-20, 300 mils (Pb-Free and Halide Free)	1000 / Tape & Reel
MM74HC541MTC	TSSOP-20 WB (Pb-Free)	75 Units / Tube
MM74HC541MTCX	TSSOP20, 4.4 × 6.5 (Pb-Free)	2500 / Tape & Reel

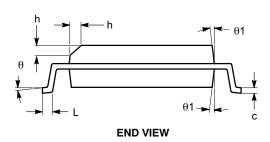
DISCONTINUED (Note 5)

MM74HC540MTC	TSSOP-20 WB	75 Units / Tube
	(Pb-Free)	


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.


SOIC-20, 300 mils CASE 751BJ ISSUE O


DATE 19 DEC 2008

SYMBOL	MIN	NOM	MAX
А	2.36	2.49	2.64
A1	0.10		0.30
A2	2.05		2.55
b	0.31	0.41	0.51
С	0.20	0.27	0.33
D	12.60	12.80	13.00
Е	10.01	10.30	10.64
E1	7.40	7.50	7.60
е		1.27 BSC	
h	0.25		0.75
L	0.40	0.81	1.27
θ	0°		8°
θ1	5°		15°

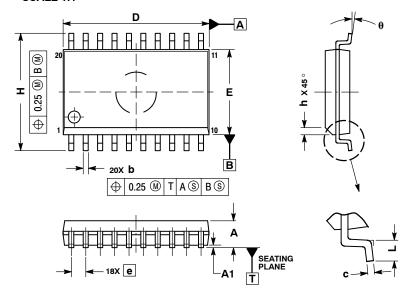
TOP VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MS-013.

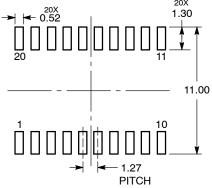
DOCUMENT NUMBER:	98AON34287E	ON34287E Electronic versions are uncontrolled except when accessed directly from the Doc Printed versions are uncontrolled except when stamped "CONTROLLED COPY"		
DESCRIPTION:	SOIC-20, 300 MILS		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

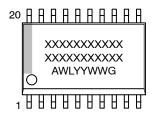


SOIC-20 WB CASE 751D-05 **ISSUE H**

DATE 22 APR 2015


SCALE 1:1

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES.
- PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL


	MILLIMETERS				
DIM	MIN MAX				
Α	2.35	2.65			
A1	0.10	0.25			
b	0.35	0.49			
С	0.23	0.32			
D	12.65	12.95			
E	7.40	7.60			
е	1.27	BSC			
Н	10.05	10.55			
h	0.25	0.75			
L	0.50	0.90			
θ	0°	7 °			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

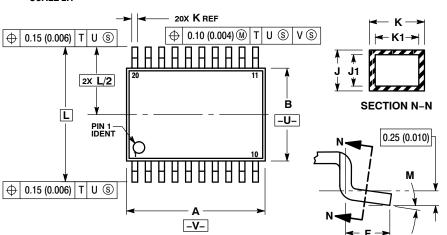
GENERIC MARKING DIAGRAM*

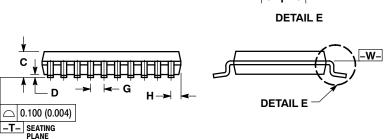
XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

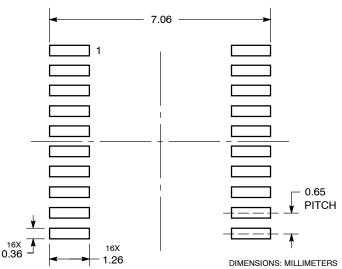
DOCUMENT NUMBER:	98ASB42343B	from the Document Repository. LLED COPY" in red.	
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1


onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

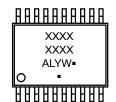

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

TSSOP-20 WB CASE 948E ISSUE D

DATE 17 FEB 2016


NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
- (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.


 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252	BSC	
M	0°	8°	0°	8°	

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot

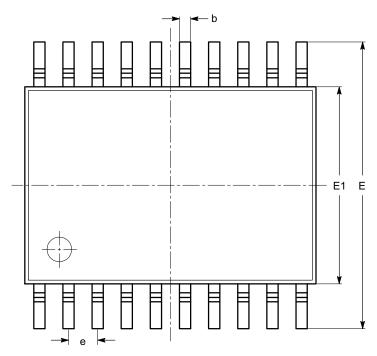
= Year

= Work Week

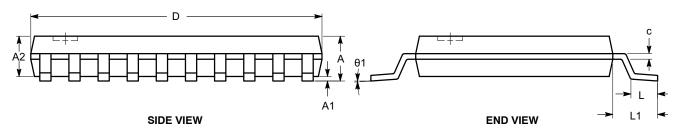
= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.


DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


TSSOP20, 4.4x6.5 CASE 948AQ ISSUE A

DATE 19 MAR 2009

SYMBOL	MIN	NOM	MAX
Α			1.20
A1	0.05		0.15
A2	0.80		1.05
b	0.19		0.30
С	0.09		0.20
D	6.40	6.50	6.60
Е	6.30	6.40	6.50
E1	4.30	4.40	4.50
е		0.65 BSC	
L	0.45	0.60	0.75
L1		1.00 REF	
θ	0°		8°

TOP VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-153.

DOCUMENT NUMBER:	98AON34453E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP20, 4.4X6.5		PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales