

Hex Inverter (Open Drain) MM74HCT05

General Description

The MM74HCT05 is a logic function fabricated by using advanced silicon–gate CMOS technology, which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. The device is also input and output characteristic and pinout compatible with standard DM74LS logic families. The MM74HCT05 open drain Hex Inverter requires the addition of an external resistor to perform a wire–NOR function.

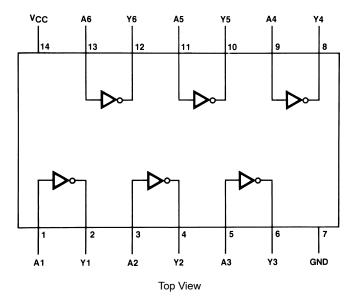
All inputs are protected from static discharge damage by internal diodes to V_{CC} and ground.

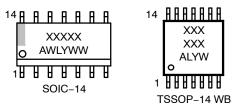
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug–in replacements for LS–TTL devices and can be used to reduce power consumption in existing designs.

Features

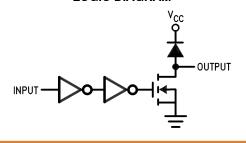
- Open Drain for Wire-NOR Function
- LS-TTL Pinout and Threshold Compatible
- Fanout of 10 LS-TTL Loads
- Typical Propagation Delays:
 - t_{PZL} (with 1 k Ω Resistor) 10 ns
 - t_{PLZ} (with 1 k Ω Resistor) 12 ns
- These are Pb-Free Devices

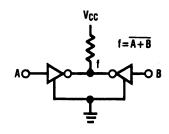
Connection Diagram




Figure 1. Connection Diagram

1


MARKING DIAGRAMS


XXXXX = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week

LOGIC DIAGRAM

TYPICAL APPLICATION

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MM74HCT05

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol		Parameter	Rating
V _{CC}	Supply Voltage	−0.5 to +6.5 V	
V _{IN}	DC Input Voltage		–0.5 to V _{CC} + 0.5 V
V _{OUT}	DC Output Voltage	-0.5 to V _{CC} + 0.5 V	
I _{IK} , I _{OK}	Clamp Diode Current	±20 mA	
l _{out}	DC Output Current, per Pin	±25 mA	
I _{CC}	DC V _{CC} or GND Current, per Pin	±50 mA	
T _{STG}	Storage Temperature Range		−65°C to +150°C
P_{D}	Power Dissipation SOIC		1077 mW
		TSSOP	833 mW
TL	Lead Temperature (Soldering 10 Seconds)		260°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Unless otherwise specified all voltages are referenced to ground.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V _{CC}	Supply Voltage	4.5	5.5	V
V _{IN}	DC Input Voltage	0	V _{CC}	V
V _{OUT}	DC Output Voltage	0	5.5	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Times	-	500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MM74HCT05

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5 V ±10% unless otherwise specified)

			T _A = 25°C		T _A = -40°C to 85°C	
Symbol	Parameter	Conditions	Тур	Guaran	teed Limits	Unit
V_{IH}	Minimum HIGH Level Input Voltage		-	2.0	2.0	V
V _{IL}	Maximum LOW Level Input Voltage		-	0.8	0.8	V
V _{OL}	Maximum LOW Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}, \ I_{OUT} \le 20 \ \mu A$	0	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL} , $ I_{OUT} = 4.0$ mA, $V_{CC} = 4.5$ V	0.2	0.26	0.33	
		$V_{IN} = V_{IH}$ or V_{IL} , $ I_{OUT} = 4.8$ mA, $V_{CC} = 5.5$ V	0.2	0.26	0.33	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}	-	±0.1	±1.0	μΑ
I _{LKG}	Maximum HIGH Level Output Leakage Current	V _{IN} = V _{IH} or V _{IL} , V _{OUT} = V _{CC}	-	0.5	5.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	V_{IN} = V_{CC} or GND, I_{OUT} = 0 μA	_	2.0	20	μΑ
		V _{IN} = 2.4 V or 0.5 V (Note 2)	-	0.3	0.4	mA
I _{OHZ}	Off State Current	V _{CC} = 4.5 V–5.5 V, V _O = 5.5 V	-	_	10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

($V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $C_L = 15 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ unless otherwise specified)

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Unit
t _{PZL}	Maximum Propagation Delay	$R_L = 1 \text{ k}\Omega$	8	15	ns
t _{PLZ}	Maximum Propagation Delay	$R_L = 1 \text{ k}\Omega$	9	16	ns

AC ELECTRICAL CHARACTERISTICS

($V_{CC} = 5 \text{ V} \pm 10\%$, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns unless otherwise specified}$)

			T _A =	25°C	T _A = -40°C to 85°C	
Symbol	Parameter	Conditions	Тур	Guaran	teed Limits	Unit
t _{PZL}	Maximum Propagation Delay	$R_L = 1 \text{ k}\Omega$	10	22	28	ns
t _{PLZ}	Maximum Propagation Delay	$R_L = 1 \text{ k}\Omega$	12	20	25	ns
t _{THL}	Maximum Output Fall Time		10	15	19	ns
C _{PD}	Power Dissipation Capacitance	(per gate) R _L = ∞ (Note 3)	_	20	-	pF
C _{IN}	Maximum Input Capacitance		-	5	10	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

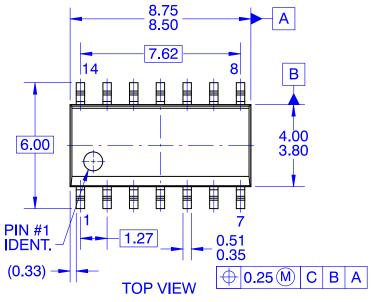
3. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption,

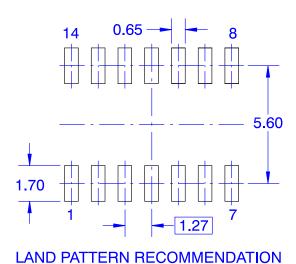
^{2.} This is measured per input with all other inputs held at V_{CC} or ground.

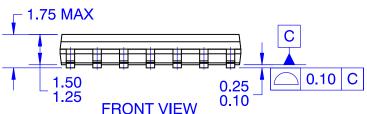
^{3.} C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC^2}$ f + $I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}$ f + I_{CC} .

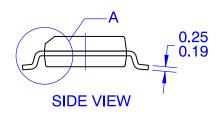
MM74HCT05

ORDERING INFORMATION

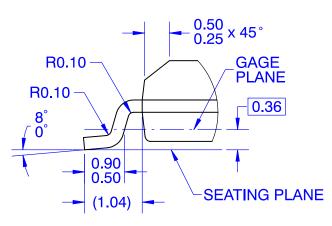

Part Number	Marking	Package	$Shipping^\dagger$
MM74HCT05MX	HCT05A	SOIC-14, Case 751EF (Pb-Free, Halide-Free)	2500 Units / Tape & Reel
MM74HCT05MTCX	HCT 05A	TSSOP-14 WB, Case 948G (Pb-Free, Halide Free)	2500 Units / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

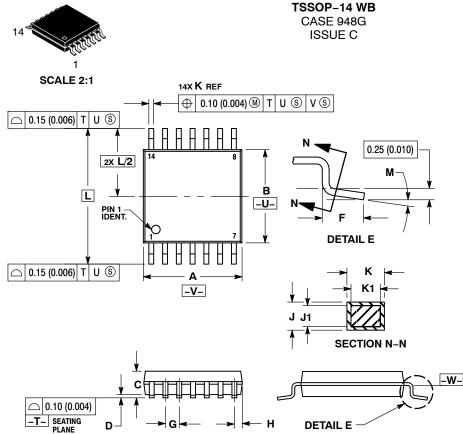



SOIC14 CASE 751EF **ISSUE O**

DATE 30 SEP 2016



NOTES:


- A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C
 B. ALL DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS DO NOT INCLUDE MOLD
- FLASH OR BURRS
- D. LAND PATTERN STANDARD: SOIC127P600X145-14M
- E. CONFORMS TO ASME Y14.5M, 2009

DETAIL A SCALE 16:1

DOCUMENT NUMBER:	98AON13739G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC14		PAGE 1 OF 1

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
М	o°	8 °	0 °	8 °

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot Υ = Year

W = Work Week

= Pb-Free Package (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

SOLDERIN	G FOOTPRINT
-	7.06
1	
— <u>—</u>	
, <u></u>	PITCH
14X 0.36	
1.26	DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER: 98ASH		98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
I	DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales