Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

TinyLogic ULP-A Buffer with Schmitt-Trigger Input

NC7SP17

The NC7SP17 is a single buffer with Schmitt–Trigger Input in tiny footprint packages. The device is designed to operate for $V_{CC} = 0.9$ V to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 2.6 ns t_{PD} at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 2.6 mA at 3.3 V
- Available in SC-88A and MicroPak[™] Packages
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

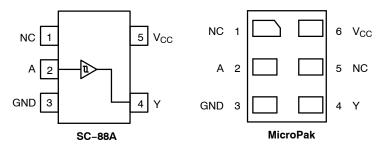


Figure 1. Pinout Diagrams (Top Views)

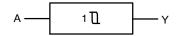
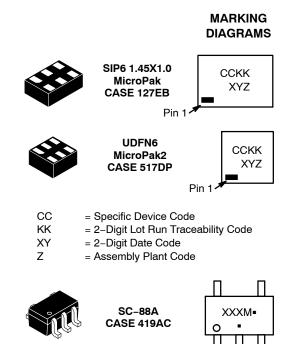



Figure 2. Logic Symbol

PIN ASSIGNMENT

Pin	SC-88A	MicroPak
1	N.C.	N.C.
2	А	A
3	GND	GND
4	Y	Y
5	V _{CC}	N.C.
6	-	V _{CC}

N.C. = No Connect

XXX = Specific Device Code

M = Date Code

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

Input	Output
А	Y
L	L
Н	Н

X = Don't Care

Z = High Impedance State

MAXIMUM RATINGS

Symbol	Character	istics	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +4.3	V
V _{IN}	DC Input Voltage		-0.5 to +4.3	V
V _{OUT}	DC Output Voltage	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +4.3 -0.5 to +4.3	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Grou	ind Pin	±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10) Seconds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88A MicroPak	377 154	°C/W
PD	Power Dissipation in Still Air	SC-88A MicroPak	332 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	0.9	3.6	V
V _{IN}	DC Input Voltage	0	3.6	V
V _{OUT}	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)		V _{CC} 3.6 3.6	
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Transition Rise and Fall Time	0	No Limit	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

NC7SP17

DC ELECTRICAL CHARACTERISTICS

				Т	A = 25°	C	T _A = -40°C	to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Мах	Unit
VP	V _P Positive Threshold Voltage		0.9	_	0.62	_	-	-	V
			1.1	_	-	1.0	-	1.0	
			1.4	_	-	1.2	-	1.2	
			1.65	-	-	1.5	-	1.5	
			2.3	-	-	1.9	-	1.9	
			3.0	_	-	2.6	-	2.6	
V _N	Negative		0.9	_	0.34	-	-	-	V
	Threshold Voltage		1.1	0.15	-	-	0.15	-	
			1.4	0.2	-	-	0.2	_	
			1.65	0.25	-	-	0.25	_	
		2.3 0.4	0.4	-	-	0.4	_		
		3.0	0.6	-	-	0.6	_		
V_{H}	Hysteresis		0.9	_	0.29	-	-	-	V
	Voltage		1.1	0.08	-	0.6	0.08	0.6	
			1.4	0.09	-	0.8	0.09	0.8	
			1.65	0.1	-	1.0	0.1	1.0	
			2.3	0.25	-	1.1	0.25	1.1	
			3.0	0.6	-	1.8	0.6	1.8	
V _{OH}	High-Level Output	$V_{IN} = V_P \text{ or } V_N$							V
	Voltage	I _{OH} = -20 μA	0.9	_	V _{CC} - 0.1	_	-	-	
	1.1 to	1.1 to 1.3	V _{CC} - 0.1	-	-	V _{CC} – 0.1	-		
			1.4 to 1.6	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-	
			1.65 to 1.95	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-	
			2.3 to 2.7	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-	
			3.0 to 3.6	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-	
		I _{OH} = -0.5 mA 1.1 to 1.3 0.75 x	0.75 x V _{CC}	-	1				
		I _{OH} = -1 mA	1.4 to 1.6	1.07	-	-	0.99	-]
		I _{OH} = -1.5 mA	1.65 to 1.95	1.24	-	-	1.22	-]
		I _{OH} = -2.1 mA	2.3 to 2.7	1.95	-	-	1.87	-]
		I _{OH} = -2.6 mA	3.0 to 3.6	2.61	-	-	2.55	-	

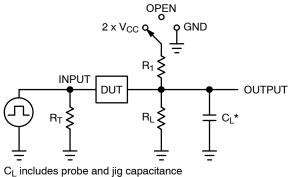
NC7SP17

DC ELECTRICAL CHARACTERISTICS (continued)

				٦	Γ _A = 25°	С	T _A = -40°	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{OL}	Low-Level Output	$V_{IN} = V_P \text{ or } V_N$							V
	Voltage	I _{OL} = 20 μA	0.9	_	0.1	-	-	-	
			1.1 to 1.3	_	-	0.1	-	0.1	
			1.4 to 1.6	_	-	0.1	-	0.1	
			1.65 to 1.95	_	-	0.1	-	0.1	
			2.3 to 2.7	_	-	0.1	-	0.1	
			3.0 to 3.6	-	-	0.1	-	0.1	1
		l _{OL} = 0.5 mA	1.1 to 1.3	-	-	$0.3 \times V_{CC}$	-	$0.3 \times V_{CC}$	1
		I _{OL} = 1 mA	1.4 to 1.6	-	-	0.31	-	0.37	1
		l _{OL} = 1.5 mA	1.65 to 1.95	-	-	0.31	-	0.35	1
		I _{OL} = 2.1 mA	2.3 to 2.7	-	-	0.31	-	0.33	1
		I _{OL} = 2.6 mA	3.0 to 3.6	-	-	0.31	-	0.33	1
I _{IN}	Input Leakage Current	V _{IN} = 0 V to 3.6 V	0.9 to 3.6	-	-	±0.1	-	±0.5	μΑ
I _{OFF}	Power Off Leakage Current	$V_{IN} = 0 V \text{ to } 3.6 V \text{ or}$ $V_{OUT} = 0 V \text{ to } 3.6 V$	0	_	-	0.5	-	0.5	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	0.9 to 3.6	_	-	0.9	_	0.9	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS


				٦	Γ _A = 25°0	2	T _A = -40°C	C to +85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	R_L = 1 M Ω , C_L = 10 pF	0.9	-	64.4	-	-	_	ns
t _{PHL}	A to Y (Figures 3 and 4)		1.10 to 1.30	-	16.4	39.3	-	46.6	
			1.40 to 1.60	-	6.7	14.8	-	15.0	
			1.65 to 1.95	-	4.7	12.0	-	12.2	
			2.3 to 2.7	-	3.2	9.4	-	9.9	
			3.0 to 3.6	-	2.6	8.3	-	9.0	
t _{PLH} ,	t _{PLH} , Propagation Delay,		0.9	-	66.3	-	-	-	ns
t _{PHL}	A to Y (Figures 3 and 4)	A to Y (Figures 3 and 4)	1.10 to 1.30	-	16.9	40.7	-	48.2	
			1.40 to 1.60	-	7.1	15.5	-	16.5	
			1.65 to 1.95	-	5.1	12.6	-	13.6	
			2.3 to 2.7	-	3.4	9.9	-	10.8	
		3.0 to 3.6	-	2.8	8.7	-	9.5		
t _{PLH} ,	Propagation Delay,	$R_L = 1 M\Omega, C_L = 30 pF$	0.9	-	72.1	-	-	-	ns
t _{PHL}	A to Y (Figures 3 and 4)		1.10 to 1.30	-	18.3	44.9	-	53.0	
			1.40 to 1.60	-	8.4	17.8	-	18.2	
			1.65 to 1.95	-	6.2	14.4	-	15.9	
			2.3 to 2.7	-	4.1	11.3	_	12.8	
			3.0 to 3.6	-	3.3	9.2	_	10.7	

NC7SP17

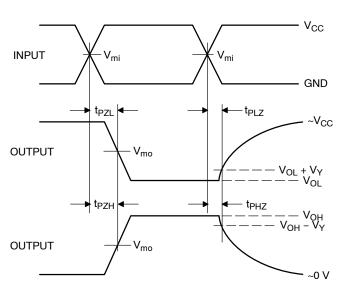
CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	$V_{CC} = 0 V$	2.0	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V	4.0	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	f = 10 MHz, V_{CC} = 0.9 to 3.6 V, V_{IN} = 0 V or V_{CC}	8.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

 Test
 Switch Position

 t_{PLH} / t_{PHL}
 Open


 t_{PLZ} / t_{PZL}
 2 x V_{CC}

 t_{PHZ} / t_{PZH}
 GND

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f = 1 MHz

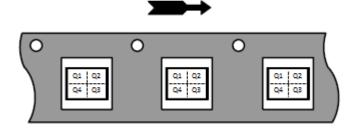
t_r = 3 ns t_f = 3 ns V_{CC} 90% 90% INPUT V_{mi} V_{mi} 10% 10% GND **t**PHL t_{PLH} VOH OUTPUT V_{mo} V_{mo} V_{OL} +t_{PHL} ► t_{PLH} V_{OH} V_{mo} OUTPUT V_{mo}

Figure 3. Test Circuit

V _{CC} , V	V _{mi} , V	V _{mo} , V	V _Y , V
0.9	V _{CC} / 2	V _{CC} / 2	0.1
1.1 to 1.3	V _{CC} / 2	V _{CC} / 2	0.1
1.4 to 1.6	V _{CC} / 2	V _{CC} / 2	0.1
1.65 to 1.95	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	1.5	1.5	0.3

 V_{OL}

Figure 4. Switching Waveforms

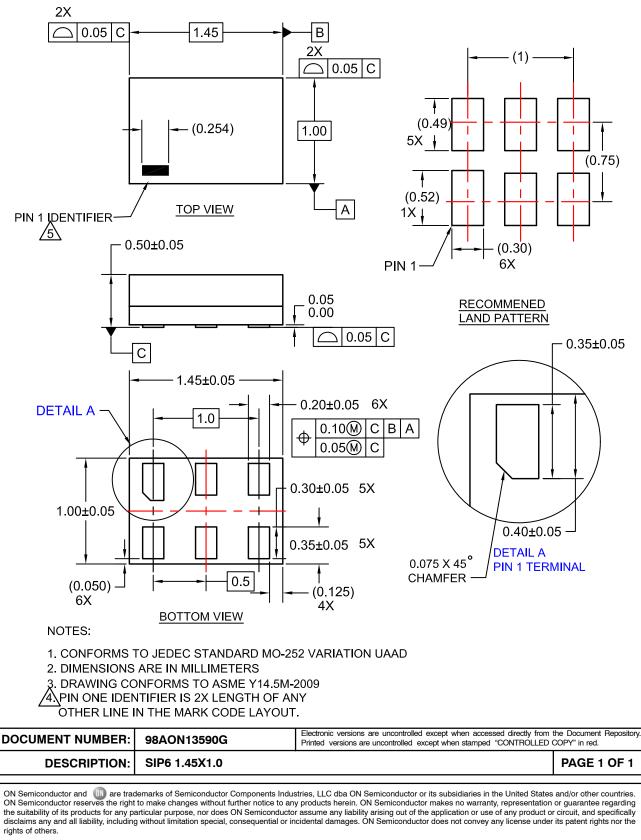

ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NC7SP17P5X	SC-88A	P17	Q4	3000 / Tape & Reel
NC7SP17L6X	MicroPak	K4	Q4	5000 / Tape & Reel
NC7SP17FHX	MicroPak2	K4	Q4	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

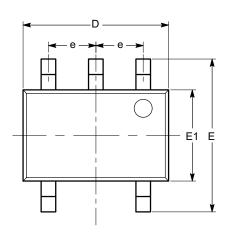
PIN 1 ORIENTATION IN TAPE AND REEL

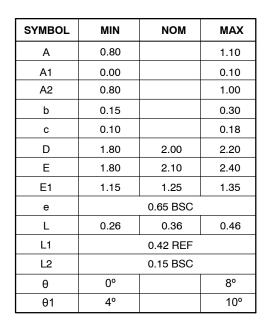
Direction of Feed

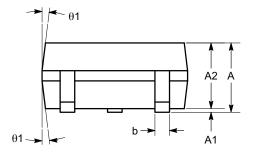


MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

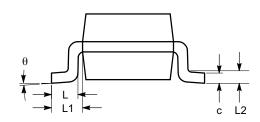
SIP6 1.45X1.0 CASE 127EB ISSUE O


DATE 31 AUG 2016

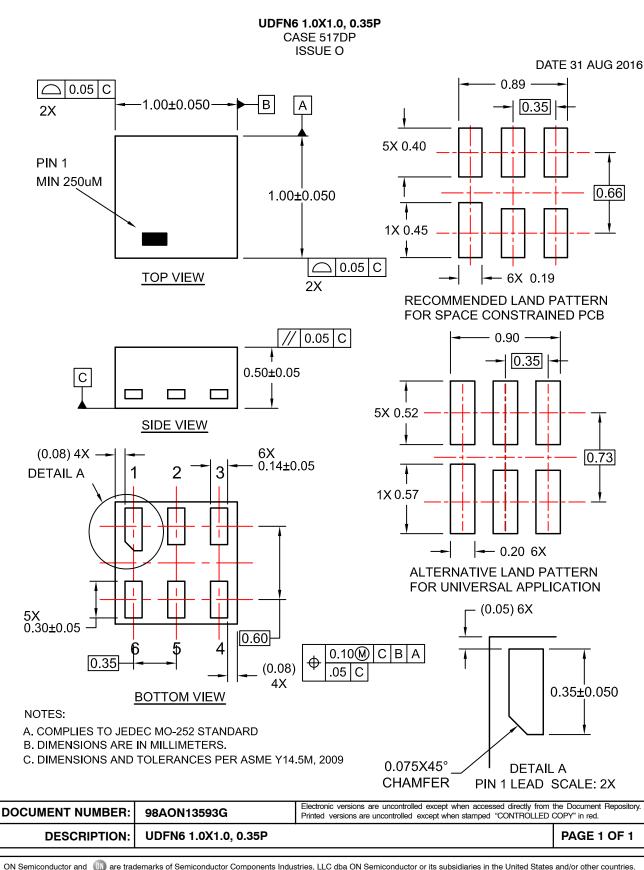



SC-88A (SC-70 5 Lead), 1.25x2 CASE 419AC-01 ISSUE A

DATE 29 JUN 2010



SIDE VIEW


END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

DOCUMENT NUMBER:	98AON34260E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: SC-88A (SC-70 5 LEAD), 1.25X2 PAGE 1						
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi making the products herein. onsemi making liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pre of any product or circuit, and specifically disclaims any and all liability, incl e under its patent rights nor the rights of others.	oducts for any particular			

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>