

JN Semiconductor®

To kara more about Old Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

July 2002 Rev. 2, May 2004

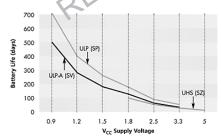
NC7SVU04

TinyLogic® ULP-A Unbuffered Inverter

General Description

The NC7SVU04 is a single unbuffered inverter from Fairchild's Ultra Low Power-A (ULP-A) series of TinyLogic®. ULP-A is ideal for applications that require extreme high speed, high drive and low power. This product is designed for a wide low voltage operating range (0.9V to 3.6V V_{CC}) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation.

The NC7SVU04 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.


Features

- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from. PV to 3.6
- Extremely High Speed tpD
 - 1.5 ns typ for 2.7V to 3.6V $V_{\rm CC}$
 - 1.8 ns typ for 2.3V to 2.7\
 - 1.9 ns typ for 1.65 o 1.95\
 - 3.2 ns typ for $4V \text{ tc} 6V V_{CC}$
 - 5.9 ns ~ for 1. to 1.
 - 1 0 ns 7. 1 CC
- Pc r-Oi. In impedance in puts and outputs
- High ntic ve (I_{OH}/'_{OL})
- ±24 mA ② 3.00√ V_CC
- 18 mA @ 2 30V V_{CC}
- ±6 mA. 1.65V V_{CC}
- ±41.1A @ 1.45 v₍₇₎
- ±?...A @ 1.1√ V_{CC}
- ±20 μΆ @ 0.9V V_{CC}
- Uses patented Quie. Series™ noise/EMI reduction circulary
- Ultra sn all MicroPak™ leadfree package
- Ultra low dynamic power

rdc ing Coce:

J	der Number	Package Number	Top Mark	Package Description	Supplied As
	NC7SV U0 1P5X	MAA05A	VI/4	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
	IC7SVU04L6X	MAC06/	N4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

Battery Life = $(V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day$

Where, $P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f$

Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with $C_L=15\,\mathrm{pF}$ load

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.

MicroPak™, and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.

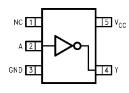
NC7SVU04

Logic Symbol

Pin Descriptions

Pin Names	Description
Α	Input
Y	Output
NC	No Connect

Function Table


 $\boldsymbol{Y}=\overline{\boldsymbol{A}}$

Inputs	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignment for SC70

(Top View)

Pad Assignments for Mic, 'ak

(Top (hru Vi≎w)

0.9V to 3.6V

$\begin{array}{lll} \textbf{Absolute Maximum Ratings} (\text{Note 1}) & \textbf{Recommended Operating} \\ \text{Supply Voltage (V}_{\text{CC}}) & -0.5 \text{V to } +4.6 \text{V} \end{array} \\ \textbf{Conditions (Note 3)}$

DC Output Diode Current (I_{OK}) Output Current in I_{OH}/I_{OL}

-50 mA $V_{CC} = 3.0V$ to 3.6V+24 mA $V_{OUT} < 0V$ $V_{CC} = 2.3V \text{ to } 2.7V$ V_{OUT} > V_{CC} +50 mA DC Output Source/Sink Current (I_{OH}/I_{OL}) \pm 50 mA $V_{CC} = 1.65V$ to 1.95V ±6 . DC V_{CC} or Ground Current per $V_{CC} = 1.4V$ to 1.6V $V_{CC} = 1.1V \text{ to } 1.3V$ Supply Pin (I_{CC} or Ground) \pm 50 mA

Storage Temperature Range (T_{STG}) -65°C to +150°C V_{CC} = 0.9V ±20 µA

Free Air Operating $^+$ mperatu $^+$ ($^+$ A) $^+$ 0°C to $^+$ 85°C Minimum Inpu' $^-$ dge te ($^+$ dt/ $^+$ A)

 $V_{IN} = 0.8V \text{ to } . V, V_C = 3.0^{\circ}$ 10 ns/V

Note 1: A. The property of the safe of the set of the s

e 2: I_O Absolute Maximum Roting must be ob enced.

No : Unused in the must be held MGH o. 1. W. They may not float.

DC Electrical Characteric

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$: tc +55°C	Units	Conditions	
		(V)	Min Via		Max		Contain	
V _{IH}	HIGH Level		0.f. x V _{CC}	0.8 x V _{CC}	- (2			
	Input Voltage	10 ≤ V _{CC} ≤ 1.3 · ·	0.8 x V _{CC}	5.8 x V _C r,	11.			
		.40 ≤ V _{CC} . 1 ′ · 0		0.8 < V _{CC}		V		
		1.65 ⊆ 1 _{CC} ≤ 1.95	0.8 × V _C ?	0.8 x √ _{CC}		v		
		130 \(\times V_{CC} < 2.70\)	0.3 x V _{JC}	0 5 x V _{CC}				
		$2.70 \le V_{CC} \le 3.6$		0.8 x V _{CC}				
77	OW Level	0.50	0.2 x		0.2 x V _{CC}			
	, ut Voltage	1.10 ≤ V _C ; ≤ 1.30	0.2 x	√ _{CC}	$0.2 \times V_{\rm CC}$			
		1 45 ≤ V _{CC} ≤ 1 6c		√ _{CC}	$0.2 \times V_{\rm CC}$	V		
1	(GV, X)	1.85 ≤ V _{CC} ≤ 1.95	0.2 x '	√ _{CC}	$0.2 \times V_{\rm CC}$	v		
1 . \		$2.30 \le V_{CC} < 2.70$	0.2 x '		$0.2 \times V_{\rm CC}$			
		27€ ≤ V _{CC} ≤ 3.60	0.2 x '	V _{CC}	$0.2 \times V_{\rm CC}$			
Vc·	HIGH Level	0.90	V _{CC} - 0.2	V _{CC} - 0.2			$I_{OH} = -20 \mu A$	
	Output Voltage	$1.10 \le V_{CC} \le 1.30$	V _{CC} - 0.2	V _{CC} - 0.2				
	21	$1.40 \le V_{CC} \le 1.60$		V _{CC} - 0.3			I _{OH} = -100 μA	$V_{IN} = V_{IH}$
		$1.65 \le V_{CC} \le 1.95$		V _{CC} - 0.3				VIN — VIH
		$2.30 \le V_{CC} < 2.70$		V _{CC} - 0.3				
		$2.70 \leq V_{CC} \leq 3.60$		V _{CC} - 0.3				
		$1.10 \le V_{CC} \le 1.30$		0.75 x V _{CC}			$I_{OH} = -2 \text{ mA}$	
		$1.40 \le V_{CC} \le 1.60$		0.75 x V _{CC}		V	$I_{OH} = -4 \text{ mA}$	
		$1.65 \le V_{CC} \le 1.95$	1.25	1.25			$I_{OH} = -6 \text{ mA}$	
		$2.30 \le V_{CC} < 2.70$	2.0	2.0			OH SIIII	
		$2.30 \le V_{CC} < 2.70$	1.8	1.8			I _{OH} = -12 mA	$V_{IN} = GND$
		$2.70 \le V_{CC} \le 3.60$	2.2	2.2			ОН	
		$2.30 \le V_{CC} < 2.70$	1.7	1.7			$I_{OH} = -18 \text{ mA}$	
		$2.70 \le V_{CC} \le 3.60$	2.4	2.4				
		$2.70 \leq V_{CC} \leq 3.60$	2.2	2.2			$I_{OH} = -24 \text{ mA}$	

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{cc}	T _A = -	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Conditions	
Symbol	Farameter	(V)	Min Max		Min Max		Units		
V _{OL}	LOW Level	0.90		0.1		0.1		$I_{OL} = 20 \mu A$	
	Output Voltage	$1.10 \le V_{CC} \le 1.30$		0.1		0.1			$V_{IN} = V_{IL}$
		$1.40 \leq V_{CC} \leq 1.60$		0.2		0.2			
		$1.65 \leq V_{CC} \leq 1.95$		0.2		0.2		$I_{OL} = 100 \ \mu A$	v _{IN} = v _{IL}
		$2.30 \le V_{CC} < 2.70$		0.2		0.2			
		$2.70 \leq V_{CC} \leq 3.60$		0.2		0.2			
		$1.10 \le V_{CC} \le 1.30$		0.25 x V _{CC}		0.25 x V _{CC}	V	I _{OL} = 2	
		$1.40 \le V_{CC} \le 1.60$		0.25 x V _{CC}		0.25 x V _{CC}	V	I _{OL} = TA	
		$1.65 \le V_{CC} \le 1.95$		0.3		0.3		1 _{OL} = 6	
		$2.30 \le V_{CC} < 2.70$		0.4		0.4		_= 12 m/	
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.			
		$2.30 \le V_{CC} < 2.70$		0.6		0.6		'- ,8 mA	$V_{1N} = V_{CC}$
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		2 10 IIIA	11.4
		$2.70 \leq V_{CC} \leq 3.60$		0.55		55		I _{OL} = 24 n A	
I _{IN}	Input Leakage Current	0.90 to 3.60		±0.1			μA	C < V _I ≤ 3.6V	1
I _{CC}	Quiescent Supply Current	0.90 to 3.60		2.9		0.9	iA	V _I =V _{CC} or GND	
		0.90 to 3.60				±0.9	LA)	V _{CC} ≤ V _I ≤ ³ o '	

AC Electrical Characteristics

	Symbol	Parameter	V _{CC} (V)	Min	A = +25 Typ	Max	$T_{A} = - +0^{\circ}C \cdot tC - \frac{1}{10^{\circ}C} \cdot 1$	/S3°C U Max	Init	Conditions	Figure Number	
	t _{PHL}	Propagation Delay	^^^		12					C_1 10 γ F, $R_L = 1 M\Omega$		
	t _{PLH}		1 ≤ V _{CC} 30	2.0	5.9	10 c	1.0	4.7	ノ(C_L = 15 pF, R_L = 2 k Ω		
			$0 \le V_{CC} \le 0$		3.2	6.1	0.9	7.0	X.		Figures	
				1.0	1.9	5.2	0.7	6.2	n	C _L = 30 pF	1, 2	
			2.370	8.)	1.8	3.7	0.6	4.4		$R_L=1\;k\Omega$		
			70 ≤ V _{CC} ≤ 3.60	0.7	1.5	3.3	0.5	3.8				
	C _{IN}	ut Cε itance	0		2.0				pF			
	Col	Cape	0		1.5				pF			
	PD	rowei ssipation	0.9) to 3.60	-0	10				pF	$V_I = 0V \text{ or } V_{CC}$		
		Carr ance	0.33 10 3.00		10	1			ρı	f = 10 MHz		
		G		7.	<u>_</u> _							
		, 13	25	\sim								
			1/ //	1.								
	(1										
		OV	1,5									
	. 7		2									
		.0										
, GV												
. 113		2										
,												

AC Loading and Waveforms

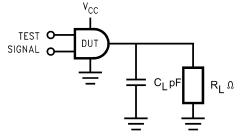
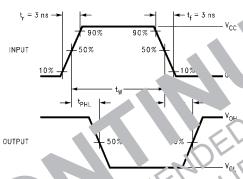
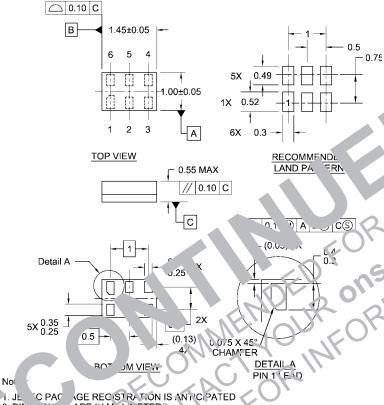



FIGURE 1. AC Test Circuit

FIGUP 9for for Inv. ling and 10.1-Inverting Functions


Symbol		ν _{cc}								
,	± 0.	2.5 0.2V	1.8\ ± 9.15V	7 5V ± 0.10V	. 2 ′ ± v.10V	0.9V				
V _{mi}	1.5V	v _{cc/2}	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2				
V	1.5	V _{CC} 2	Vr,0/2	V _C //2	V _{CC} /2	V _{CC} /2				

Tape and Reel Specification TAPE FORMAT for SC70 Package Tape Number Cavity Cover Tape Designator Cavities Section Status Status Leader (Start End) 125 (typ) Empty Sealed P5X Carrier 3000 Filled Sealed Sealed Trailer (Hub End) 75 (typ) Empty TAPE DIMENSIONS inches (millimeters) Ø 0.061±0.002 TYP. [1.55±0.05] 0.157 TYP. Ø 0.079±0.002 TYP [2.0±0.05] [4] A TYP @ TANGENT POINTS BEND RADIUS NOT TO SCALE

Tape and Reel Specification (Continued) TAPE FORMAT for MicroPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Sealed Empty L6X Carrier 5000 Filled Sealed Trailer (Hub End) 75 (typ) **Empty** Sealed TAPE DIMENSIONS inches (millimeters) 1.75±0.10 3.50±0.05 8.00 +0.30 -0.10 -ø 0.50 ±0.05 DIRECTION OF FEE 0.020ء TON A-, REEL DIMENSIONS inches (mi DETAIL X **DETAIL X** SCALE: 3X Tape Α В С D Ν W1 W2 W3 Size 7.0 0.059 0.512 0.795 2.165 0.331 + 0.059/-0.000 0.567 W1 + 0.078/-0.039 8 mm (177.8) (1.50)(13.00) (20.20)(55.00) (8.40 + 1.50 / -0.00)(14.40)(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted 0.65 B 1.25±0.10 2.10±0.10 0.20 +0.10 LAND PATTERN RECOMM ♦ max 0.1 **9** SEE DETAIL 0.95±0.15 △ max 0.1 J.425 NOMINAL DE:TAIL A A. CONFORM: TO E AJ REGISTEHEL OUTLINE DRAMIN 3 S SAA. B. DIME: SIO, IS CO NOT INCLUTE BURRS OR FOLL FLAGH. C. PIMEN, TONS ARE IN MILLIMETERS. MAA05ARevC 5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

I. JL C PAC AGE REC STRATION IS AN I C PATED 2 DIN. SARE IN MILLIMETERS 2 AWING CONFORMS TO ASI IE 111,5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide

Fairchild does not accume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative