

Is Now Part of

OR NEW DESIGN

IN Semiconductor®

To k an more about CH Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and safety requirements or standards, regardless of any support or application provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauth

NC7WV125 TinyLogic® ULP-A Dual Buffer with 3-STATE Output

NC7WV125 TinyLogic® ULP-A Dual Buffer with 3-STATE Output

General Description

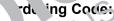
FAIRCHILD

SEMICONDUCTOR

The NC7WV125 is a dual buffer with 3-STATE output from Fairchild's Ultra Low Power-A (ULP-A) Series of TinyLogic®. ULP-A is id eal for applications that require extreme high speed, high drive and low power. This product is designed for wide low voltage operating range (0.9V to 3.6V $V_{\rm CC}$) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation.

The NC7WV125 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to ach ieve high-speed operation while maintaining low CMOS power dissipation.

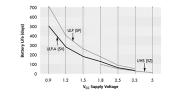
Features


- $\blacksquare~0.9V$ to 3.6V V_{CC} supply operation
- 3.6V over-voltage tolerant I/O's at V_{CC} from 9V to 3.
- Extremely High Speed t_{PD}
- 1.0 ns typ for 2.7V to 3.6V V_{CC}
- 2.0 ns typ for 2.3V to 2.7V

3.0 ns typ for 1.65 °o 1.95\ 3.5 ns typ foi 4V t⊾ 6V V_{CC}

6.0 ns m for 1. to 1.

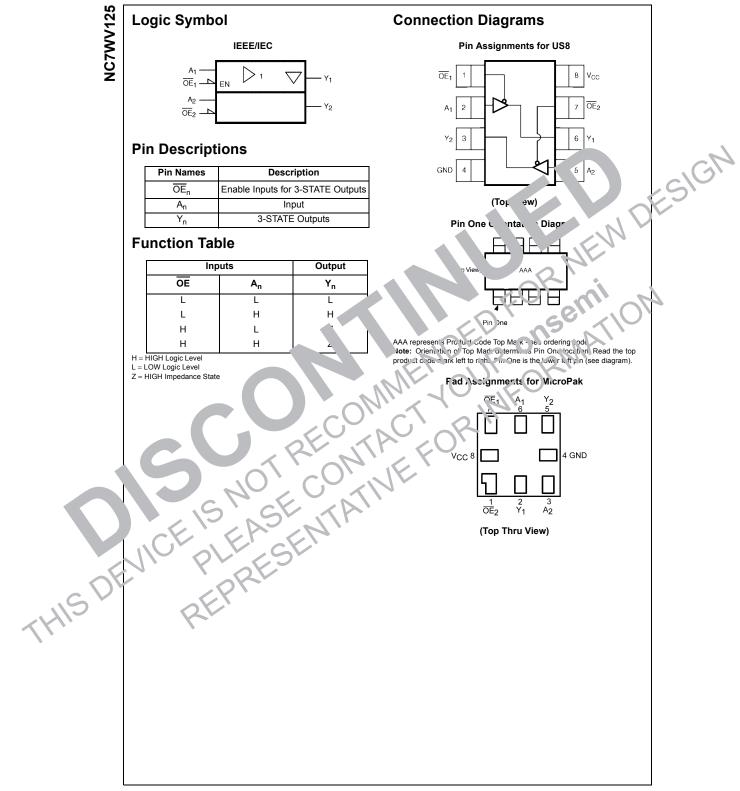
* ns t, 'u. ''


- Pc r-Oi. gh impedance is puts and outp
- High ntic ve (I_{OH}/'_{OL}/ ±24 mA 遭 3.00V V_{CC}
- 18 mA @ 2.30V V_{CC}
 - ±6 mA. (フy 1.65V V_{CC} ±4 いん @ 1.4^V v_ir(
 - ±?.mA @ 1.1. V.c
 - ±0.1 mJ @ 0.9V V_{CC}
- Uses proprietary QU et Series™ noise/EMI reduction vircuitry
 Ultra sn all MicroPak™ Pb-Free package
- Ultra low dynamic power

	Jrder Nu nber	Package Number	Product Code Top Mark	SEN	Package Description		Supplied As
	1'C7WV125K8X	МАБ08А	W1/25	8-Lead US8, JE	EDEC MO-187, Variation C	CA 3.1mm Wide	3k Units on Tape and Reel
Λ.							

Pb-Free package per JFPECJ-STL-020B.

Battery Life vs. V_{CC} Supply Voltage


TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly. Battery Life = (V_{battery} *b)/(P_{device})/24hrs/day

Where, $P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f$

Assumes ideal 3.6V Lithium lon battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C_L = 15 pF load

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.

© 2003 Fairchild Semiconductor Corporation DS500816 NC7WV125 • Rev. 2

Abs	olute Maximum Ra	•		Recomr Conditio			ting		NC7WV125
Supply	Voltage (V _{CC})	-0.5V	to +4.6V	Conditio	UIIS (Note	3)			Š
DC Inp	out Voltage (V _{IN})	-0.5V	to +4.6V	Supply Volta	age			0.9V to 3.6V	2
DC Ou	tput Voltage (V _{OUT})			Input Voltag	e (V _{IN})			0V to 3.6V	28
HIG	H or LOW State (Note 2)	–0.5V to V _C	_{CC} +0.5V	Output Volta	age (V _{OUT})				01
V _{CC}	= 0V		to +4.6V	$V_{\rm CC} = 0.0$				0V to 3.6V	
	out Diode Current (I _{IK}) V _{IN} < 0V		±50 mA		OW State			0V to V _{CC}	
	tput Diode Current (I _{OK})			Output Curr					
	_T < 0V		–50 mA	V _{CC} = 3.0	011 0	L		<u>+24.</u> 0 mA	
	T > V _{CC}		+50 mA	$V_{CC} = 2.3$				בוס. יA	FS
	tput Source/Sink Current (I _{OH} /I		± 50 mA	00	5V to 1.95V			±6.0 \	
	$_{\rm C}$ or Ground Current per	OL/	2 00 11/1	$V_{\rm CC} = 1.4$				±4.0 r	.C
	bly Pin (I _{CC} or Ground)		± 50 mA	$V_{CC} = 1.4$ $V_{CC} = 1.1$				An.	
-	e Temperature Range (T _{STG})	−65°C to		$V_{\rm CC} = 0.9$				±0.1 mA	OV.
Storag	e temperature range (T _{STG})	-05 C 10	1100 0	Free Air Op		peratu (T ₄		.J°C to ⊣ 85°C	
				-			4)	.0 0 10 + 55 0	
					V to . V, V,		\sim	10 ns/V	
				Note 1: A. saf. f the				beyond which the hould not be per-	
								Electric Chalac-	\square
								imum liatiligs. The tild conditions for	
				ctual devic	eration.	\mathbf{V}	G	> へい	Ŷ
				-	lute Maximum F				
				Nc : Unused	inputh must be	held !:: GH o. !	W. The	y may i ot float.	
DC	Electrical Charac*	tic.		NE		JK.	R		
		- tic.		= + 2±°C		C to +25° C	Units	Conditions	_
Symbo	I Parameter		Mir	Mex	Min	C to +05 0 Max	Units	Conditions	-
	I Parameter HIGH Level	.90	Min 0.65 × V _C	Max C	Min 0.65 ⊻ √ _C ;		Units	Conditions	-
Symbo	I Parameter	.90 1.10 ≤ V _{CC} ≤ 1.30	Min 0.65 x √ _C 0.65 x √ _C	Mex C	Min 0.65 ⊻ √ _{C 2} (.65 1 √ _{CC}		Units	Conditions	-
Symbo	I Parameter HIGH Level	90 1.10 ≤ V _{CC} ≤ 1.30 1.40 ≤ V _{CC} ≤ 1.30	Min 0.65 × V _C 0.65 × V _C 0.65 × V _C	Max	Min 0.65 × V _C 0.65 × V _{CC} 0.35 × V _{CC}		Units V	Conditions	-
Symbo	I Parameter HIGH Level	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.00\\ 1.65 \leq V_{CC} \leq 1.95 \end{array}$	Min 0.65 × V _C 2.65 × V _C 0.65 × V _C 0.35 × V _C	Max	Min 0.65 × √ _C 2 0.65 × √ _{CC} 0.65 × V _{CC}			Conditions	-
Symbo	I Parameter HIGH Level	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\end{array}$	Min 0.65 × V _C 2.65 × V _C 0.65 × V _C 0.35 × V _C	Max	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Conditions	-
Symbo	I Parameter HIGH Level Input Voltage	90 $1.10 \le V_{PC} \le 1.30$ $1.40 \le V_{CC} \le 1.95$ $2.30 \le V_{CC} \le 2.10$ $2.70 \le V_{CC} \le 3.10$	Min 0.65 × V _C 2.65 × V _C 0.65 × V _C 0.35 × V _C	Mex	Min 0.65 × √ _C 2 0.65 × √ _{CC} 0.65 × √ _{CC}	Max		Conditions	_
Symbo	I Parameter HIGH Level Input Voltage	$.90$ $1.10 \le V_{CC} \le 1.30$ $1.40 \le V_{CC} \le 1.95$ $2.30 \le V_{CC} \le 1.95$ $2.30 \le V_{CC} < 2.10$ $2.70 \le V_{CC} \le 3.10$ 0.90	Min 0.65 × V _C 2.65 × V _C 0.65 × V _C 0.35 × V _C	Mex 0 0 0.35 x V _{CC}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Max 0.35 x V _{CC}		Conditions	_
Symbo	I Parameter HIGH Level Input Voltage	$\begin{array}{c}90\\ \hline 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ i.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ \hline 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ \end{array}$	Min 0.65 × V _C 2.65 × V _C 0.65 × V _C 0.35 × V _C	<u>Мех</u> с 0.35 x V _{CC} 0.35 x V _{CC}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Max 0.35 x V _{CC} 0.35 x V _{CC}	v	Conditions	-
Symbo	I Parameter HIGH Level Input Voltage	$\begin{array}{c}90\\ \hline90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ \circ 65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ \hline 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ \hline1 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{-C} \leq 1.50\\ \end{array}$	Mii 0.65 × V _☉ 0.65 × V _☉ 0.65 × V _☉ 1.6 2.5	Mex 0 0 0.35 x V _{CC}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Max 0.35 x V _{CC}		Conditions	-
Symbo	I Parameter HIGH Level Input Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{UC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{UC} \leq 1.51\\ 1.65 \leq V_{CC} \leq 1.95 \end{array}$	Mii 0.65 × V _☉ 0.65 × V _☉ 0.65 × V _☉ 1.6 2.5	Мех 0.35 х V _{CC} 0.35 х V _{CC} 0.35 х V _{CC}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC}	v	Conditions	_
Symbo	I Parameter HIGH Level Input Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{UC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} < 2.70\\ \end{array}$	Mii 0.65 × V _☉ 0.65 × V _☉ 0.65 × V _☉ 1.6 2.5	Мах 0.35 х V _{CC} 0.35 х V _{CC} 0.35 х V _{CC} 0.35 х V _{CC} 0.35 х V _{CC}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Max 0.35 × V _{CC} 0.35 × V _{CC} 0.35 × V _{CC}	v	Conditions	_
Symbo V _{IH}	I Parameter HIGH Level Input Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{UC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{UC} \leq 1.51\\ 1.65 \leq V_{CC} \leq 1.95 \end{array}$	Min 0,5≕ V _C 9,65 × V ₂ 0,65 × V ₂ 0,65 × V ₂ 1.6 2,5	Мах С 0.35 x V _{CC} 0.35 x V _{CC}	Win 0.65 × Vc2 C.65 × Vc2 0.65 × Vc2 0.65 × Vc2 1.6 2.0	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	Conditions	-
Symbo V _{IH}	I Parameter HIGH Level Input Voltage OW Level Jut Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{UC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} < 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ \hline 0.90\\ \hline \end{array}$	Min 0.5 = √C_0 0.65 × V_0 0.65 × V_0 0.75 ∧ C_0 1.6 2.5 V _{CC} − 0.1	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × Vc2 C.65 × Vc2 0.65 × Vc2 0.65 × Vc2 1.6 2.0	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	Conditions	-
Symbo V _{IH}	I Parameter HIGH Level Input Voltage OW Level ut Voltage HIGH Level Output Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{UC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.65 \leq V_{UC} \leq 1.95\\ 2.50 \leq V_{CC} < 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ \end{array}$	Min 0.5 = √C 9.65 × V_0 0.65 × V_0 0.65 × V_0 0.75 ∧ C 1.6 2.7 V _{CC} − 0.1 V _{CC} − 0.1	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × Vc2 C.65 × Vc2 0.65 × Vc2 0.65 × Vc2 1.6 2.0	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v		-
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level ut Voltage HIGH Level Output Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} < 2.30\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ \end{array}$	Min 0.5 = √C_C 0.65 × V_C 0.65 × V_C 0.75 ∧ /C_C 1.6 2.5 V _{CC} − 0.1 V _{CC} − 0.2 V _{CC} − 0.2	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × Vc2 C.65 × Vc2 0.65 × Vc2 0.65 × Vc2 1.6 2.0	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	Conditions	-
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level ut Voltage HIGH Level Output Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.40\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.55 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.60\\ \hline \end{array}$	Min 0.5 = √C_C 0.65 × V_C 0.65 × V_C 0.75 ∧ C_C 1.6 2.5 V _{CC} − 0.1 V _{CC} − 0.2 V _{CC} − 0.2 V _{CC} − 0.2	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × V_C C.65 × V_CC 0.65 × V_CC 1.6 2.0	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v		-
Symbo	I Parameter HIGH Level Input Voltage OW Level Jut Voltage HIGH Level Output Voltage	$\begin{array}{c}30\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} < 2.10\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.65 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ \hline 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.50\\ \end{array}$	Min 0.5 = √C_C 2.65 × V_C 0.65 × V_C 0.75 × V_C	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × Vc2 0.65 × Vc2 0.65 × Vc2 0.65 × Vc2 1.6 2.0	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	I _{OH} = -100 μA	-
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level , ut Voltage HIGH Level Output Voltage	$\begin{array}{c}30\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 2.10\\ 0.90\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.70\\ \end{array}$	Min 0.5 = √C 2.65 × V_C 0.65 × V_C 0.75 × V_C	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × V_{C2} 0.65 × V_{C2} 0.65 × V_{C2} 0.65 × V_{C2} 1.6 2.0 V _{CC} - 0.1 V _{CC} - 0.1 V _{CC} - 0.2	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	I _{OH} = -100 μA I _{OH} = -2.0 mA	-
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level Jut Voltage HIGH Level Output Voltage	$\begin{array}{c}30\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ 0.90\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.50\\ 2.50 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.3$	Mi. 0.5 - √C 0.65 × V_C 0.65 × V_C 0.75 × V_C 0.75 × V_C 0.75 × V_C 0.75 × V_C VCC - 0.1 VCC - 0.2	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × V_C 0.65 × V_CC 0.65 × V_CC 1.6 2.0 V _{CC} - 0.1 V _{CC} - 0.1 V _{CC} - 0.2 V _{CC} - 0.2 V _{CC} - 0.2	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	I _{OH} = -100 μA	-
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level Jut Voltage	$\begin{array}{c}30\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 1.95\\ 3.90\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.50\\ 1.40 \leq V_{CC} \leq 1.50\\ 2.70 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 1.65 \leq V_{CC} \leq 3.60\\ 1.10 \leq V_{CC} \leq 3.60\\ 1.10 \leq V_{CC} \leq 1.30\\ \end{array}$	Mi. 0.5 VC 9.65 VC 0.65 VC 0.75 VC 1.6 2.5 VCC 0.75 VCC 0.75 VCC 0.75	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × V_{C2} 0.65 × V_{C2} 0.65 × V_{C2} 0.65 × V_{C2} 1.6 2.0 V _{CC} - 0.1 V _{CC} - 0.1 V _{CC} - 0.2	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	$I_{OH} = -100 \ \mu A$ $\overline{I_{OH}} = -2.0 \ m A$ $\overline{I_{OH}} = -4.0 \ m A$	- - - -
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level Jut Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 2.70\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.60\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.50\\ 2.30 \leq V_{CC} < 2.70\\ 2.70 \leq V_{CC} \leq 2.70\\ 1.55 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.70\\ 1.55 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.70\\ 1.55 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.70\\ 1.55 \leq V_{CC} < 2.7$	$\begin{array}{c} \hline \textbf{Mi.} \\ \hline 0.5 \approx V_{C} \\ 2.65 \times V_{C} \\ 0.55 \times V_{C} \\ 0.50 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 1.25 \\ 2.0 \end{array}$	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × Vc2 0.75 × Vc2 0.75 × Vc2 0.75 × Vc2	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	I _{OH} = -100 μA I _{OH} = -2.0 mA	-
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level Jut Voltage	$\begin{array}{c}30\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ 0.90\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ \end{array}$	$\begin{array}{c} \hline \textbf{Mi.} \\ \hline 0.5 \approx V_{C} \\ 2.65 \times V_{C} \\ 0.55 \times V_{C} \\ 0.50 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 1.25 \\ 2.0 \end{array}$	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	Win 0.65 × Vc2 0.75 × Vc2 0.75 × Vc2 0.75 × Vc2 0.75 × Vc2 1.25	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	$I_{OH} = -100 \ \mu A$ $I_{OH} = -2.0 \ m A$ $I_{OH} = -4.0 \ m A$ $I_{OH} = -6.0 \ m A$	- - - -
Symbo VIH	I Parameter HIGH Level Input Voltage OW Level Jut Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ 0.90\\ 1.11 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 2.70\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.60\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.3$	$\begin{array}{c} \hline \textbf{Mi.} \\ \hline 0.5 \simeq V_{C} \\ 2.65 \times V_{C} \\ 0.55 \times V_{C} \\ 0.55 \times V_{C} \\ 0.57 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 1.25 \\ 2.0 \\ 1.8 \\ 2.2 \end{array}$	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	$\begin{tabular}{ c c c c c } \hline Win \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 1.6 \\ \hline 2.0 \\ \hline \hline \hline \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 1.25 \\ \hline 2.0 \\ \hline \hline \hline \hline 0.75 & V_{CC} \\ \hline 1.25 \\ \hline 2.0 \\ \hline \end{tabular}$	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	$I_{OH} = -100 \ \mu A$ $\overline{I_{OH}} = -2.0 \ m A$ $\overline{I_{OH}} = -4.0 \ m A$	-
Symbo V _{IH}	I Parameter HIGH Level Input Voltage OW Level Jut Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ 0.90\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.60\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 0\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.70\\ 0\\ 1.65 \leq V_{CC} < 2.70\\ 0\\ 1.65 \leq V_{CC} \leq 1.95\\ 0\\ 1.65 \leq V_{CC} \leq 2.70\\ 0\\ 1.65 \leq V_{CC} < 2.70\\ 0\\ 1.65 \leq V_{CC} < 2.70\\ 0\\ 1.65 \leq V_{CC} < 2.70\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} \hline \textbf{Mi.} \\ \hline 0.5 \simeq V_{C} \\ 2.65 \times V_{C} \\ 0.55 \times V_{C} \\ 0.55 \times V_{C} \\ 0.57 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 1.25 \\ 2.0 \\ 1.8 \\ 2.2 \end{array}$	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	$\begin{tabular}{ c c c c c } \hline Win \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 1.6 \\ \hline 2.0 \\ \hline \hline \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 1.25 \\ \hline 2.0 \\ \hline 1.8 \\ \hline \end{tabular}$	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	$I_{OH} = -100 \ \mu A$ $I_{OH} = -2.0 \ m A$ $I_{OH} = -4.0 \ m A$ $I_{OH} = -6.0 \ m A$ $I_{OH} = -12.0 \ m A$	- - - - - -
Symbo V _{IH}	I Parameter HIGH Level Input Voltage OW Level Jut Voltage HIGH Level Output Voltage	$\begin{array}{c}90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} < 2.10\\ 2.70 \leq V_{CC} \leq 3.10\\ 0.90\\ 1.11 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 1.95\\ 2.50 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 2.70\\ 0.90\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.60\\ 1.65 \leq V_{CC} \leq 1.95\\ 2.30 \leq V_{CC} \leq 2.70\\ 2.70 \leq V_{CC} \leq 3.60\\ 1.10 \leq V_{CC} \leq 1.30\\ 1.40 \leq V_{CC} \leq 1.3$	$\begin{array}{c} \hline \textbf{Mi.} \\ \hline 0.5 \simeq \sqrt{C} \\ 2.65 \times V_{C} \\ 0.55 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 0.75 \times V_{C} \\ 1.25 \\ 2.0 \\ 1.8 \\ 2.2 \\ 1.7 \\ 2.4 \end{array}$	Мах С 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7 0.8	$\begin{tabular}{ c c c c c } \hline Win \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 1.6 \\ \hline 2.0 \\ \hline \hline \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.65 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 0.75 & V_{CC} \\ \hline 1.25 \\ \hline 2.0 \\ \hline 1.8 \\ \hline 2.2 \\ \hline \end{tabular}$	Mäx 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.35 x V _{CC} 0.7	v	$I_{OH} = -100 \ \mu A$ $I_{OH} = -2.0 \ m A$ $I_{OH} = -4.0 \ m A$ $I_{OH} = -6.0 \ m A$	-

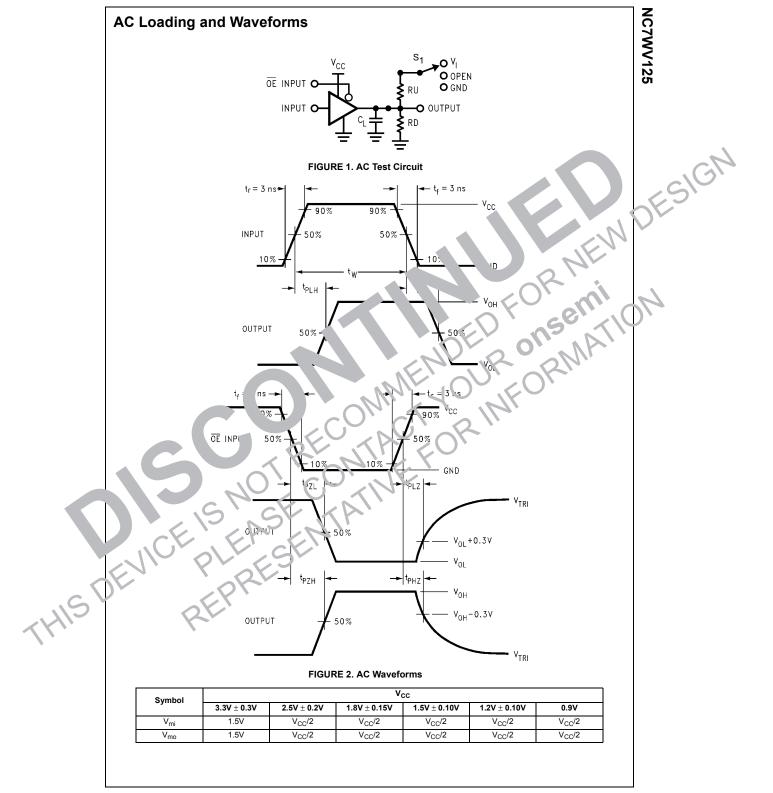
	Parameter		V _{cc}		T _A = +25°C		T _A = −40°	°C to +85°	с	1	
Symbol			(V)	Mi	Min		Min	Max	Units	Cond	Conditions
V _{OL}	LOW Level		0.90			0.1		0.1			
OL	Output Voltage	1	$.10 \le V_{CC} \le 1$.30		0.1		0.1			
			.40 ≤ V _{CC} ≤ 1.			0.2		0.2			
		1	$1.65 \le V_{CC} \le 1.00$.95		0.2		0.2		$I_{OL} = 100$	JμA
			$2.30 \le V_{CC} < 2$			0.2		0.2			
		2	$2.70 \le V_{CC} \le 3.$.60		0.2		0.2			
		1	$1.10 \le V_{CC} \le 1.10$.30	0.2	25 x V _{CC}		0.25 x \	/cc	'0L -	mA
			$.40 \le V_{CC} \le 1$.60	0.25 x V _{CC}		0.25 x V _C		/cc	I _{OL} = 4.	A
		1	$.65 \le V_{CC} \le 1$.95		0.3		0.3			A
		2	$2.30 \le V_{CC} < 2$.70		0.4					.0 mA
			$2.70 \le V_{CC} \le 3$			0.4		L	4	<u> </u>	
			$2.30 \le V_{CC} < 2$			0.6		0.6		I _{O1} = 18	0A
			$2.70 \le V_{CC} \le 3.$			0.4		1.4			4
<u> </u>			$2.70 \le V_{CC} \le 3$			0.55		5		$1_{OL} = 24.$	
I _{IN}	Input Leakage Currer		0.90 to 3.60			··0.1		.J.5 ±0.5		$0 \le V_{I} \le 3$	
I _{OZ}	3-STATE Output Leal	каде	0.90 to 3.60					±0.7	A i	$V_{I} = V_{IH}$	
1	Power Off Leakage C	Current	0		<u> </u>	0.5				$\frac{1}{10} = \frac{1}{10} \leq \frac{1}{10}$	/ ₀) ≤ 3.ℓ
I _{OFF}	Quiescent Supply Cu		0.90 to 3.60			9		0.9	μ^	$\frac{1}{ V_1 = V_{1} }$	المحمد المناه
'CC	Quicacent Supply Su		0.90 to 0.00		<u> </u>		-6-	±0.9	"PA	$V_{1-1} \leq V_{1}$	
				<u> </u>				<u> </u>	<u> </u>	1.62.1	
AC	Electrical Ch	haracte	n			1	×. \	~	2	1.	
Symbol	Parameter	VCL	- 4	T _A = +25°			C tu +25°C	Units	Condit	tions	Figure Number
	Dranagatia	(V) 0.90		<u>ריי</u> ד 1.2.נ	.'lax	Mir .	Max	<u> </u>	0 15 - 5	D 1 MO	
t _{PHL}	Propagatic	1.1	30 7.0		1.8	1.9	14.9		$C_{L} = 15 \text{ pF, I}$ $C_{I} = 15 \text{ pF, I}$		
t _{PLH}		40 ≤ V _{CC} ≤		3.5	5.0	0 8	5.7		o_ = 10 pi , i	NL - 2 N32	
		.65 ≤ V _{CC} .		3.0	4.6	0.3	4.9	ns	C _L = 30 pF		Figures 1, 2
		2.30 < 1 _{CC} <		10	3.5	0.7	3.5		$R_{I} = 500\Omega$		
		2.70 ∠ V _{CC} ≤		1.0	3.1	0.5	3.3		-		
	Outr	0.90		1+.0	4				$C_L = 30 \text{ pF}$		
t _{P≿}	Linable Time	$1.10 \le V_C$		6.7	9.7	2.0	16.4	1	$R_U = 1k\Omega$		
	1,15	1.40 - V _{CC} -	1.60 1.2	4.0	6.0	1.0	7.5	ns	$R_D = 1k\Omega$		Figures
		1 65 ≤ v _{CC} ≤		3.0	4.7	0.9	5.2	115	$S_1 = GND$ fo	or t _{PZH}	1, 2
		$2.30 \le V_{CC} <$		2.0	3.5	0.7	3.7		$S_1 = V_I \text{ for } t_F$	PZL	
		2.70 ≟ V _{CC} ≤	3.00 0.5	1.2	3.1	0.4	3.4		$V_I = 2 \times V_{CC}$		
<u>_1</u>	Output	0.90		14.0	-			1	C _L = 30 pF		
t _{PHZ}			4 00 00	5.0	9.5	2.0	14.0	1	$R_U = 1k\Omega$		1
t _{PHZ} ФLZ		1.10 ≤ V _{CC} ≤									
		$1.40 \le V_{CC} \le$	1.60 1.2	3.0	5.9	1.1	7.1	ns	$R_D = 1k\Omega$		Figures
		$1.40 \le V_{CC} \le$ $1.65 \le V_{CC} \le$	1.601.21.951.0	3.0 2.0	6.3	0.8	6.5	ns	$S_1 = GND$ fo		Figures 1, 2
		$1.40 \le V_{CC} \le$ $1.65 \le V_{CC} \le$ $2.30 \le V_{CC} \le$	1.60 1.2 1.95 1.0 2.70 0.8	3.0 2.0 1.5	6.3 5.3	0.8 0.5	6.5 5.5	ns	$S_1 = GND \text{ for } S_1 = V_1 \text{ for } t_F$	PLZ	Figures 1, 2
ΨLZ	Disable Time	$1.40 \le V_{CC} \le$ $1.65 \le V_{CC} \le$ $2.30 \le V_{CC} \le$ $2.70 \le V_{CC} \le$	1.60 1.2 1.95 1.0 2.70 0.8	3.0 2.0 1.5 1.0	6.3	0.8	6.5		$S_1 = GND$ fo	PLZ	Figures 1, 2
		$1.40 \le V_{CC} \le$ $1.65 \le V_{CC} \le$ $2.30 \le V_{CC} \le$	1.60 1.2 1.95 1.0 2.70 0.8	3.0 2.0 1.5	6.3 5.3	0.8 0.5	6.5 5.5	pF	$S_1 = GND \text{ for } S_1 = V_1 \text{ for } t_F$	PLZ	Figures 1, 2

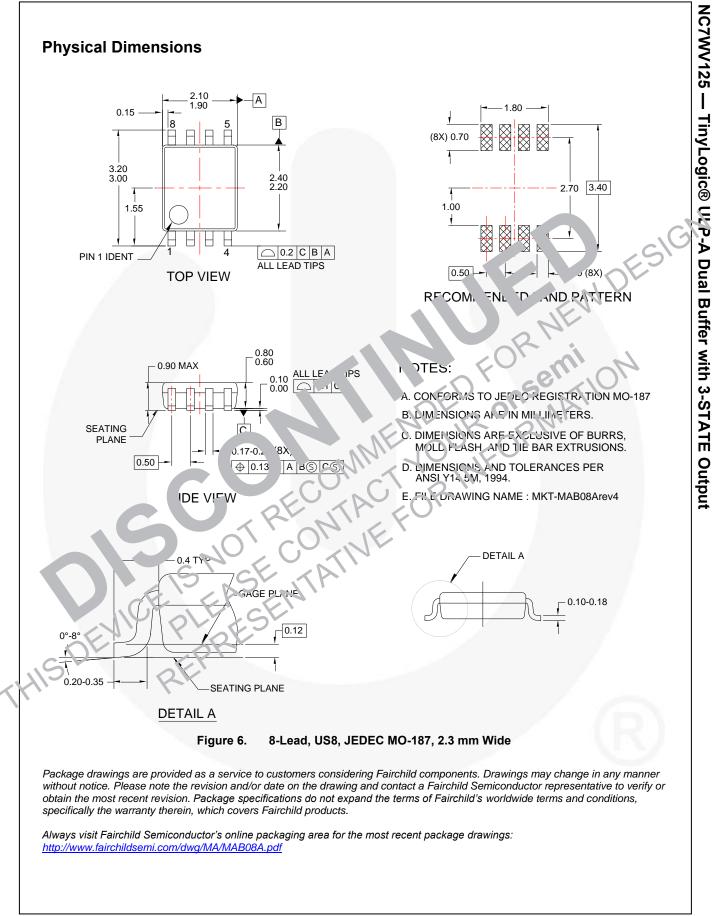
pF

 $V_I = 0V \text{ or } V_{CC}$

f = 10 MHz

www.fairchildsemi.com


 C_{PD}


Power Dissipation

Capacitance

0.90 to 3.60

12.0

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC