QN902X User Manual of QN902x Rev. 1.3 — 05 November 2018

User Manual

Document information

Info Content						
Keywords	User manual, MCU, Register					
Abstract	This document is a user manual of QN902x SoC.					

Revision history

Rev	Date	Description						
1.0	20150715	First version.						
1.1	20160408	Updated some register description.						
1.2	20180423	Updated Section 2.3, "Memory Organization".						
1.3	20181105	Added description on fast boot function. Removed description on QN902x temperature sensor.						

Contact information

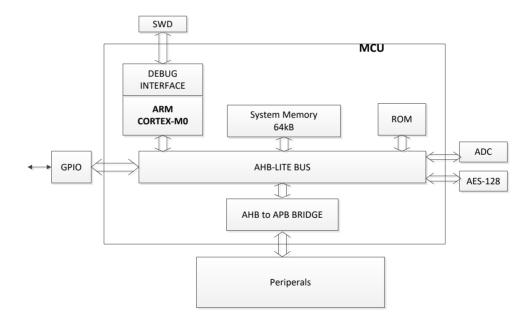
For more information, please visit: <u>http://www.nxp.com</u>

UM10996

User Manual

All information provided in this document is subject to legal disclaimers.

1. Introduction


This document is a user manual for the QN902x SoC. It describes in detail the principle and register information of the main components of the QN902x. The audience of this document are technical and experienced engineers in design and development area based on SoC.

2. MCU Subsystem

The MCU system includes:

- 32-bit ARM Cortex-M0 MCU
- AHB-Lite bus system
- 64kB system memory
- Clock, reset and power management units
- Two-wire debug interface (SWD)
- 24-bit system tick timer

Block diagram is shown as below figure.

Figure 1 QN902x MCU subsystem block diagram

2.1 MCU

The CPU core is a 32-bit ARM Cortex-M0 core, which offers significant benefits to application development including:

- Simple and easy-to-use programmer's model
- Highly efficient ultra-low power operation
- Excellent code density

• Deterministic, high-performance interrupt handling of 32 external interrupt inputs

The processor has been extensively optimized for low power, and delivers exceptional power efficiency through its efficient instruction set, providing high-end processing hardware including a single-cycle multiplier. The exceptional low power, small gate count and code footprint of the processor makes it ideal for ultra-low power MCU and mixed signal applications, delivering 32-bit performance and efficiency.

2.1.1 Nested Vectored Interrupt Controller (NVIC)

NVIC of QN902x supports 32 external interrupt inputs, each with four levels of priority. It also supports both, level-sensitive and edge-sensitive interrupt lines.

External interrupt signals are connected to the NVIC, and the NVIC prioritizes the interrupts. Software can set the priority of each interrupt. The NVIC and the Cortex-MO processor core are closely coupled, providing low latency interrupt processing and efficient processing of late arriving interrupts.

The Wake-up Interrupt Controller (WIC) supports ultra-low power sleep mode. This enables the processor and NVIC to be put into a very low-power sleep mode leaving the WIC to identify and prioritize the interrupts. The processor fully implements the Wait-For-Interrupt (WFI), Wait For Event (WFE) and the send Event (SEV) instructions. In addition, the processor also supports the use of SLEEPONEXIT, which causes the processor core to enter sleep mode when it returns from an exception handler in Thread mode.

IRQ#	Source	IRQ#	Source				
0	GPIO	16	SPI1_TX				
1	ACMP0	17	SPI1_RX				
2	ACMP1	18	12C				
3	BLE_Interrupt	19	TIMERO				
4	RTC_Capture	20	TIMER1				
5	OSC_EN	21	TIMER2				
6	RTC Timeout	22 TIMER3					
7	ADC	23 WatchDog					
8	DMA	24	PWM0				
9	ANT_RX	25 PWM1					
10	UARTO_TX	26	Calibration				
11	UARTO_RX	27	Proprietary_RX				
12	SPI0_TX	28	Proprietary_TX				
13	SPI0_RX	29	BLE_RX				
14	UART1_TX	30	BLE_TX				
15	UART1_RX	31	BLE_FRQ_JUMP				

Table 1 Interrupt Sources

2.1.2 Serial Wire Debug (SWD) interface

The QN902X supports Serial Wire Debug Port (SW-DP) interface. The debug pins (SWCLK, SWDIO) share the pins with normal function pins, with debug being the default state.

In addition, it supports 4 hardware breakpoints and 2 watchpoints. The basic debug functionality includes processor halt, single-step, processor core register access, Reset and HardFault Vector Catch, unlimited software breakpoints, and full system memory and register access.

For security purpose, the debug interface cannot read locked instruction memory content. It can only read the unlocked instruction space. The security is controlled by the user.

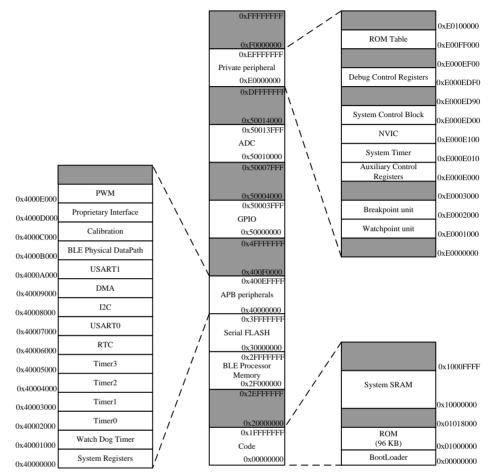
2.1.3 System Timer (SYSTICK)

SYSTICK provides a simple, 24-bit clear-on-wire, decrementing, wrap-on-zero counter with a flexible control mechanism, which is intended to generate a dedicated SYSTICK exception at a fixed time interval.

2.2 System Bus

The QN902X contains an AHB-Lite bus system to allow bus masters to access the memory mapped address space. A multilayer AHB bus matrix connects the 2 master bus interfaces to the AHB slaves. The bus matrix allows several AHB slaves to be accessed simultaneously. The 2 AHB bus master are: MCU and DMA.

An AHB-to-APB bridge is connected to the AHB bus matrix, to access the low speed peripherals. The APB can run on lower clock than AHB for low power consumption.


2.3 Memory Organization

The memory architecture is a ROM + Flash + RAM architecture, with the ROM storing the BLE stack, the Flash being used for application program and data storage. During the boot, the program is loaded from the Flash to the RAM. This allows execution with system clock up to 32MHz and reduction of the active current consumption compared to the execution from the Flash.

The QN902x supports 96 kB of ROM and 128 kB of flash (QN9020/1). The ROM space is not accessible to users. The system RAM memory is 64kB in size for application program and data, which consists of 8 blocks, addresses for them are allocated as below.

- Memory 0 : 10000000 ~ 10001fff
- Memory 1 : 10002000 ~ 10003fff
- Memory 2 : 10004000 ~ 10005fff
- Memory 3 : 10006000 ~ 10007fff
- Memory 4 : 10008000 ~ 10009fff
- Memory 5 : 1000a000 ~ 1000bfff
- Memory 6 : 1000c000 ~ 1000dfff
- Memory 7 : 1000e000 ~ 1000ffff

The system memory (ROM + SRAM + Flash), all registers and external devices are allocated in the same memory map within 4GB, ranging from 0x00000000 to 0xFFFFFFF, which is shown in the following **Figure 2**. The system memory security is ensured with a user controllable protection scheme, preventing un-authorized read out.

Figure 2 QN902X System Address Space

2.4 Reset Management Unit (RMU)

The RMU ensures correct reset operation. A correct reset sequence is needed to ensure the safe startup. The RMU provides proper reset and startup, even in the case of error situations such as power supply glitches or software crash.

Reset sources:

- Power-on Reset (POR)
- Brown-out Detection (BOD)
- RESET pin
- Watchdog timeout reset

The Power-on Reset and Brown-out detectors provide power line monitoring with exceptional low power consumption. The cause of the reset may be read by the software from the registers.

The RST_CAUSE_SRC register indicates the reason for the last reset. The register should be cleared after read at the startup. Otherwise the register may indicate multiple reset causes at next startup. Note that it is possible to have multiple reset causes. For example, an external reset and a watchdog reset may happen simultaneously. For more information, please see RST_CAUSE_SRC (RCS) register description.

2.5 Register Description

2.5.1 Register Map

The MCU subsystem register base address is 0x40000000.

Offset	Name	Description
000h	CRSS	Enable clock gating and set block reset
004h	CRSC	Disable clock gating and clear block reset
008h	CMDCR	Set clock switch and clock divider
00Ch	STCR	Set systick timer STCALIB and STCLKEN
014h	SOCR	Reserved. Don't change
020h	PMCR0	PIN Mux control 0
024h	PMCR1	PIN Mux control 1
028h	PMCR2	PIN Mux control 2
02Ch	PDCR	PAD Driver control
030h	PPCR0	PAD Pull-up and Pull-down control 0
034h	PPCR1	PAD Pull-up and Pull-down control 1
038h	RCS	Reset Cause source
03Ch	IOWCR	Controller IO as wakeup source
040h	BLESR	BLE status
080h	SMR	QN902X enter SCAN or test mode
088h	CHIP_ID	CHIP_ID
090h	PGCR0	Power gating control 0
094h	PGCR1	Power gating control 1
098h	PGCR2	Power gating control 2
09Ch	GCR	Control RF Gain
0A0h	IVREF_X32	Control XTAL32 and IVREF
0A4h	XTAL_BUCK	Control XTAL and BUCK
0A8h	LO1	Control analog LO
0ACh	LO2	Reserved. Don't change
0B0h	RXCR	Reserved. Don't' change
0B4h	ADCCR	Control SAR ADC clock source
0B8h	ANACTRL	Control analog peripherals
0BCh	ADDITION	Other analog internal control

Table 2 Register Map

2.5.2 Register Description

Table 3 CRSS (CLK_RST_SOFT_SET)

Bit	Туре	Reset	Symbol	Description
31	RW1	0	GATING_TIMER3	Write 1 to disable timer 3 clock, 0 no effect.
30	RW1	0	GATING_TIMER2	Write 1 to disable timer 2 clock, 0 no effect.
29	RW1	0	GATING_TIMER1	Write 1 to disable timer 1 clock, 0 no effect.
28	RW1	1	GATING_TIMER0	Write 1 to disable timer 0 clock, 0 no effect.
27	RW1	1	GATING_UART1	Write 1 to disable UART 1 clock, 0 no effect.
26	RW1	1	GATING_UART0	Write 1 to disable UART 0 clock, 0 no effect.
25	RW1	1	GATING_SPI1	Write 1 to disable SPI 1 clock, 0 no effect.
24	RW1	1	GATING_SPI0	Write 1 to disable SPI 0 clock, 0 no effect.
23	RW1	1	GATING_32K_CLK	Write 1 to disable 32KHz clock, 0 no effect.
22	RW1	1	GATING_SPI_AHB	Write 1 to disable FLASH control clock, 0 no effect.
21	RW1	1	GATING_GPIO	Write 1 to disable GPIO clock, 0 no effect.
20	RW1	1	GATING_ADC	Write 1 to disable ADC clock, 0 no effect.
19	RW1	1	GATING_DMA	Write 1 to disable DMA clock, 0 no effect.
18	RW1	1	GATING_BLE_AHB	Write 1 to disable BLE AHB clock, 0 no effect.
17	RW1	1	GATING_PWM	Write 1 to disable PWM clock, 0 no effect.
16	RW1	0	REBOOT_SYS	Write 1 to reboot entire system
15	RW1	0	LOCKUP_RST	Write 1 to enable LOCKUP reset control
14	RW1	1	BLE_RST	Write 1 to set BLE reset
13	RW1	1	DP_RST	Write 1 to set datapath reset
12	RW1	1	DPREG_RST	Write 1 to set datapath register reset
11	RW1	1	RTC_RST	Write 1 to set sleep timer reset

-				
10	RW1	1	I2C_RST	Write 1 to set I2C reset
9	RW1	1	GPIO_RST	Write 1 to set GPIO reset
8	RW1	1	WDOG_RST	Write 1 to set Watch Dog reset
7	RW1	1	TIMER3_RST	Write 1 to set timer 3 reset
6	RW1	1	TIMER2_RST	Write 1 to set timer 2 reset
5	RW1	1	TIMER1_RST	Write 1 to set timer 1 reset
4	RW1	1	TIMER0_RST	Write 1 to set timer 0 reset
3	RW1	1	USART1_RST	Write 1 to set USART1 (SPI 1 and UART 1) reset
2	RW1	1	USARTO_RST	Write 1 to set USARTO (SPI 0 and UART 0) reset
1	RW1	1	DMA_RST	Write 1 to set DMA reset
0	RW1	1	CPU_RST	Write 1 to set CPU reset

Table 4 CRSC (CLK_RST_SOFT_CLR)

1111			
T۸	x	NGATING TIMER2	30
W1	x	NGATING TIMER1	29
W1	х	NGATING TIMERO	28
W1	х	NGATING UART1	27
W1	x	NGATING UARTO	26
W1	x	NGATING SPI1	25
W1	x	NGATING SPIO	24
W1	x	NGATING 32K CLK	23
W1	х	NGATING SPI AHB	22
W1	x	NGATING GPIO	21
W1	x	NGATING ADC	20
W1	x		19
W1	x	NGATING BLE AHB	18
W1	x	NGATING PWM	17
	x	RSVD	16
W1	x	DIS LOCKUP RST	15
W1	x	CLR BLE RST	14
W1	х	CLR DP RST	13
W1	х	CLR DPREG RST	12
W1	x	CLR SLPTIM RST	11
W1	x	CLR 12C RST	10
W1	x	CLR GPIO RST	6
W1	х	CLR WDOG RST	∞
W1	х	CLR TIMER3 RST	7
W1	х	CLR TIMER2 RST	9
W1	х	CLR TIMER1 RST	5
W1	x	CLR TIMERO RST	4
W1	x	CLR USART1 RST	ŝ
W1	х	CLR USARTO RST	2
W1	x	CLR DMA RST	1
W1	х	CLR CPU RST	0

Bit	Туре	Reset	Symbol	Description
31	W1	х	NGATING_TIMER3	Write 1 to enable timer 3 clock
30	W1	х	NGATING_TIMER2	Write 1 to enable timer 2 clock
29	W1	х	NGATING_TIMER1	Write 1 to enable timer 1 clock
28	W1	х	NGATING_TIMER0	Write 1 to enable timer 0 clock
27	W1	х	NGATING_UART1	Write 1 to enable UART 1 clock
26	W1	х	NGATING_UART0	Write 1 to enable UART 0 clock
25	W1	х	NGATING_SPI1	Write 1 to enable SPI 1 clock
24	W1	х	NGATING_SPI0	Write 1 to enable SPI 0 clock
23	W1	х	NGATING_32K_CLK	Write 1 to enable 32KHz clock
22	W1	х	NGATING_SPI_AHB	Write 1 to enable SPI AHB clock
21	W1	х	NGATING_GPIO	Write 1 to enable GPIO clock

20	W1	х	NGATING_ADC	Write 1 to enable ADC clock
19	W1	х	NGATING_DMA	Write 1 to enable DMA clock
18	W1	х	NGATING_BLE_AHB	Write 1 to enable BLE AHB clock
17	W1	х	NGATING_PWM	Write 1 to enable PWM clock
16		х	RSVD	Reserved
15	W1	х	DIS_LOCKUP_RST	Write 1 to disable LOCKUP reset control
14	W1	х	CLR_BLE_RST	Write 1 to clear BLE reset
13	W1	х	CLR_DP_RST	Write 1 to clear datapath reset
12	W1	х	CLR_DPREG_RST	Write 1 to clear datapath register reset
11	W1	х	CLR_SLPTIM_RST	Write 1 to clear sleep timer reset
10	W1	х	CLR_I2C_RST	Write 1 to clear I2C reset
9	W1	х	CLR_GPIO_RST	Write 1 to clear GPIO reset
8	W1	х	CLR_WDOG_RST	Write 1 to clear Watch Dog reset
7	W1	х	CLR_TIMER3_RST	Write 1 to clear timer 3 reset
6	W1	х	CLR_TIMER2_RST	Write 1 to clear timer 2 reset
5	W1	х	CLR_TIMER1_RST	Write 1 to clear timer 1 reset
4	W1	х	CLR_TIMER0_RST	Write 1 to clear timer 0 reset
3	W1	х	CLR_USART1_RST	Write 1 to clear USART1 (SPI 1 and UART 1) reset
2	W1	х	CLR_USART0_RST	Write 1 to clear USARTO (SPI 0 and UART 0) reset
1	W1	х	CLR_DMA_RST	Write 1 to clear DMA reset
0	W1	х	CLR _CPU_RST	Write 1 to clear CPU reset

Table 5 CMDCR (CLK_MUX_DIV_CTRL)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
CLK MUX[1]	CLK MUX[0]	SEL CLK 32K	BLE FRQ SEL	BLE DIV BYPASS	BLE DIVIDER						AHB_DIVIDER					USART1 DIV BYPASS		USART1_DIVIDER		USARTO DIV BYPASS		USART0_DIVIDER		RSVD	APB DIV BYPASS	APR DIVIDER		TIMER DIV BYPASS		TIMER_DIVIDER	
0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	Я	RW	RW	RW	RW	RW	RW	RW
Bi	t	Туј	ре	R	ese	t			Syn	nbo	ol			Description																	

31-	RW	01b	CLK_MUX[1-0]	Select system clock source.
30				00b = High frequency crystal 16MHz or 32MHz;
				01b = 20MHz internal high frequency;
				10b = 32MHz PLL output;
				11b = 32KHz low speed clock;
29	RW	0	SEL_CLK_32K	1 = Select 32KHz clock from RCO
				0 = Select 32KHz clock from XTAL32
28	RW	1	BLE_FRQ_SEL	Describe BLE clock frequency.
				0 = 8 MHz;
				1 = 16 MHz
27	RW	1	BLE_DIV_BYPASS	'1' is bypass BLE Divider; Only 16 or 8 MHz are supported;
26	RW	0	BLE DIVIDER	If BLE_DIV_BYPASS is '0',
			_	BLE CLK = AHB CLK / (2*(BLE DIVIDER +1));
				Only 16 or 8 MHz are supported;
25	RW	1	AHB DIV BYPASS	'1' is bypass AHB Divider;
24-	RW	0	AHB_DIVIDER[8-0]	If AHB_DIV_BYPASS is '0',
16				AHB_CLK = SYS_CLK/(2*(APB_DIVIDER+1));
15	RW	0	USART1_DIV_BYPASS	'1' is bypass USART1 Divider;
14-	RW	001b	USART1_DIVIDER[2-	If USART1_DIV_BYPASS is '0',
12			0]	USART1_CLK = AHB_CLK/(2*(USART1_DIVIDER+1))
11	RW	1	USART0_DIV_BYPASS	'1' is bypass USARTO Divider;
10-	RW	0	USART0 DIVIDER[2-	If USARTO DIV BYPASS is '0',
8			0]	USART0_CLK = AHB_CLK/(2*(USART1_DIVIDER+1))
7	R	0	RSVD	Reserved
6	RW	0	APB_DIV_BYPASS	'1' is bypass APB Divider;
5-4	RW	01b	APB DIVIDER[1-0]	If APB_DIV_BYPASS is '0',
				APB_CLK = AHB_CLK/(2*(APB_DIVIDER+1))
3	RW	1	TIMER_DIV_BYPASS	'1' is bypass TIMER Divider;
2-0	RW	001b	TIMER DIVIDER[2-0]	If TIMER DIV BYPASS is '0',
-				TIMER_CLK = AHB_CLK / (2*(TIMER_DIVIDER + 1));
		1		

Table 6 STCR (SYS_TICK_CTRL)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	1	0
STCLEN	RSVD	RSVD	RSVD	RSVD	RSVD													STCALIB													
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1	1
RW	R	R	R	R	R	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW												

Bit	Туре	Reset	Symbol	Description
31	RW	1	STCLEN	'1' is enable STCLKEN, so that SCLK of CPU can be gated by
				STCLKEN;
30-26	R	00000	RSVD	Reserved

User Manual of QN902x

QN902x

25-0	RW	10001	STCALIB[2	CPU STCALIB input
		47h	5-0]	

Table 7 PMCR0 (PIN_MUX_CTRL0)

10	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	S	4	m	2	1
			PIN CTRL[28]	PIN CTRL[27]	PIN CTRL[26]	PIN CTRL[25]	PIN CTRL[24]	PIN CTRL[23]	PIN CTRL[22]	PIN CTRL[21]	PIN CTRL[20]	PIN CTRL[19]	PIN CTRL[18]	PIN CTRL[17]	PIN CTRL[16]	PIN CTRL[15]	PIN CTRL[14]	PIN CTRL[13]	PIN CTRL[12]	PIN CTRL[11]	PIN CTRL[10]	PIN CTRL[9]	PIN CTRL[8]	PIN CTRL[7]	PIN CTRL[6]	PIN CTRL[5]	PIN CTRL[4]	PIN CTRL[3]	PIN CTRL[2]	PIN CTR[1]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DVA	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Bit	Туре	Reset	Symbol	Description
31-0	RW	0	PIN_CTRL[31-0]	Please see GPIO MUX Table;

Table 8 PMCR1 (PIN_MUX_CTRL1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	з	2	1	
FLASH CTRL PIN	TEST ENABLE1		PIN CTRL[60]	PIN CTRL[59]	PIN CTRL[58]		PIN CTRL[56]	PIN CTRL[55]	PIN CTRL[54]	PIN CTRL[53]	PIN CTRL[52]	PIN CTRL[51]	PIN CTRL[50]	PIN CTRL[49]	PIN CTRL[48]	PIN CTRL[47]	PIN CTRL[46]	PIN CTRL[45]	PIN CTRL[44]	PIN CTRL[43]	PIN CTRL[42]	PIN CTRL[41]	PIN CTRL[40]	PIN CTRL[39]	PIN CTRL[38]	PIN CTRL[37]	PIN CTRL[36]	PIN CTRL[35]	PIN CTRL[34]	PIN CTRL[33]	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	

Bit	Туре	Reset	Symbol	Description
31	RW	0	FLASH_CTRL_PIN	When External Flash is used,
				0 = P1_0,P1_1,P1_2,P1_3 port is for SPI Flash;
				1 = P1_0,P1_1,P1_2,P1_3port isn't for SPI Flash;
30	RW	0	TEST_ENABLE1	Reserved. Must write 0.
29	RW	0	TEST_ENABLE0	Reserved. Must write 0.
28-0	RW	0	PIN_CTRL[60-32]	Please see GPIO MUX Table;

Table 9 PMCR2 (PIN_MUX_CTRL2)

RW	0	TEST CTRL[4]
RW	0	TEST CTRL[3]
RW	0	
RW	0	
RW	0	TEST CTRL[0]
R	0	
Я	0	RSVD
R	0	RSVD
Я	0	RSVD
R	0	RSVD
В	0	RSVD
R	0	RSVD
Я	0	RSVD
Я	0	RSVD
R	0	RSVD
RW	1	CLKOUT1 PIN SEL
RW	0	CLKOUTO PIN SEL
RW	0	UART1 PIN SEL
RW	0	I2C PIN SEL
RW	0	ADCT PIN SEL
R	0	RSVD
RW	0	SPIO PIN SEL
RW	0	SPI1 PIN SEL

Bit	Туре	Reset	Symbol	Description
31-27	RW	0	TEST_CTRL[4-0]	Reserved
26-8	R	0	RSVD	Reserved
7	RW	1	CLKOUT1_PIN_S	0 = CLKOUT1 is HCLK;
			EL	1 = CLKOUT1 is CLK_32K
6	RW	0	CLKOUT0_PIN_S	0 = CLKOUT0 is HCLK;
			EL	1 = CLKOUT0 is CLK_32K
5	RW	0	UART1_PIN_SEL	0 = UART1_cts is connected with P1_2;
				UART1_rxd is connected with P1_0;
				1 = UART1_cts is connected with P3_7;
				UART1_rxd is connected with P2_0;
4	RW	0	I2C_PIN_SEL	0 = i2c_scl is connected with P2_4;
				I2c_sda is connected with P2_3;
				1 = i2c_scl is connected with P0_5;
				I2c_sda is connected with P0_2;
3	RW	0	ADCT_PIN_SEL	0 = ADC Trigger is connected with P1_2;
				1 = ADC Trigger is connected with P0_5;
2	R	0	RSVD	Reserved
1	RW	0	SPIO_PIN_SEL	0 = SPI 0 CLK is connected with P0_2;
				SPI 0 CS0 is connected with P0_1;
				SPI 0 Data out is connected with P0_0;
				SPI 0 Data in is connected with P1_7;
				1 = SPI 0 CLK is connected with P3_5;
				SPI 0 CS0 is connected with P3_6;
				SPI 0 Data out is connected with P3_4;
				SPI 0 Data in is connected with P3_3;
0	RW	0	SPI1_PIN_SEL	0 = SPI 1 CLK is connected with P1_3;
				SPI 1 CS0 is connected with P1_2;
				SPI 1 Data out is connected with P1_1;
				SPI 1 Data in is connected with P1_0;
				1 = SPI 1 CLK is connected with P2_2;
				SPI 1 CS0 is connected with P3_7;
				SPI 1 Data out is connected with P2_1;
				SPI 1 Data in is connected with P2_0;

Table 10 PDCR (PAD_DRV_CTRL)

R	0	RSVD
RW	0	PAD DRV CTRL[30]
RW	0	PAD DRV CTRL[29]
RW	0	PAD DRV CTRL[28]
RW	0	PAD DRV CTRL[27]
RW	0	PAD DRV CTRL[26]
RW	0	PAD DRV CTRL[25]
RW	0	PAD DRV CTRL[24]
RW	0	PAD DRV CTRL[23]
RW	0	PAD DRV CTRL[22]
RW	0	PAD DRV CTRL[21]
RW	0	PAD DRV CTRL[20]
RW	0	PAD DRV CTRL[19]
RW	0	PAD DRV CTRL[18]
RW	0	PAD DRV CTRL[17]
RW	0	-
RW	0	PAD DRV CTRL[15]
RW	0	PAD DRV CTRL[14]
RW	0	PAD DRV CTRL[13]
RW	0	PAD DRV CTRL[12]
RW	0	PAD DRV CTRL[11]
RW	0	PAD DRV CTRL[10]
RW	0	PAD DRV CTRL[9]
RW	0	PAD DRV CTRL[8]
RW	0	PAD DRV CTRL[7]
RW	0	PAD DRV CTRL[6]
RW	0	PAD DRV CTRL[5]
RW	0	PAD DRV CTRL[4]
RW	0	PAD DRV CTRL[3]
RW	0	PAD DRV CTRL[2]
RW	0	PAD DRV CTRL[1]
RW	0	PAD DRV CTRL[0]

Bit	Тур	Res	Symbol	Description
	е	et		
31	R	0	RSVD	Reserved
30-0	RW	0	PAD_DRV_CTRL[30-0]	Every bit control one GPIO PAD driver ability; 0 = Low driver , 1 = High driver.

Table 11 PPCR0 (PAD_PULL_CTRL0)

RW	0		
2		PAD PULL CTRL[30] 3	30
	1	PULL CTRL[29]	29
RW	0	PAD PULL CTRL[28] 2	28
RW	1	PAD PULL CTRL[27] 2	27
RW	0	PAD PULL CTRL[26] 2	26
RW	1	PULL CTRL[25]	25
RW	0	PAD PULL CTRL[24]	24
RW	1	PAD PULL CTRL[23] 2	23
RW	0	CTRL[22]	22
RW	1	_	21
RW	0	PAD PULL CTRL[20] 2	20
RW	1	PAD PULL CTRL[19] 1	19
RW	0	PAD PULL CTRL[18] 1	18
RW	1	PAD PULL CTRL[17] 1	17
RW	0	PAD PULL CTRL[16] 1	16
RW	1	PAD PULL CTRL[15] 1	15
RW	0	PAD PULL CTRL[14] 1	14
RW	1	PAD PULL CTRL[13] 1	13
RW	0	PAD PULL CTRL[12] 1	12
RW	1	PAD PULL CTRL[11] 1	11
RW	0	PAD PULL CTRL[10] 1	10
RW	1	PAD PULL CTRL[9]	б
RW	0	PAD PULL CTRL[8]	∞
RW	1	PAD PULL CTRL[7]	7
RW	0	PAD PULL CTRL[6]	9
RW	1	PAD PULL CTRL[5]	5
RW	0	PAD PULL CTRL[4]	4
RW	1	PAD PULL CTRL[3]	m
RW	0	PAD PULL CTRL[2]	2
RW	1	PAD PULL CTRL[1]	-
RW	0	PAD PULL CTRL[0]	0

Bit	Туре	Reset	Symbol	Description
31-0	RW	AAAA	PAD_PULL_CTRL[31-0]	Every two bit control one GPIO PAD Pull Up or
		AAAA		Pull Down;
		h		00b = High-Z;
				01b = Pull-down;
				10b = Pull-up;
				11b = Reserved

Table 12 PPCR1 (PAD_PULL_CTRL1)

User Manual

R	0	RSVD
R	0	RSVD
RW	1	PAD PULL CTRL[62]
RW	0	
RW	1	PAD PULL CTRL[60]
RW	0	PAD PULL CTRL[59]
RW	1	PAD PULL CTRL[58]
RW	0	PAD PULL CTRL[57]
RW	1	
RW	0	PAD PULL CTRL[55]
RW	1	PULL
RW	0	PAD PULL CTRL[53]
RW	1	PAD PULL CTRL[52]
RW	0	PAD PULL CTRL[51]
RW	1	PAD PULL CTRL[50]
RW	0	PULL
RW	1	PAD PULL CTRL[48]
RW	0	PAD PULL CTRL[47]
RW	1	PAD PULL CTRL[46]
RW	0	PAD PULL CTRL[45]
RW	1	PAD PULL CTRL[44]
RW	0	PAD PULL CTRL[43]
RW	1	PAD PULL CTRL[42]
RW	0	PAD PULL CTRL[41]
RW	1	PAD PULL CTRL[40]
RW	0	PAD PULL CTRL[39]
RW	1	PAD PULL CTRL[37]
RW	0	PAD PULL CTRL[36]
RW	1	PAD PULL CTRL[35]
RW	0	PAD PULL CTRL[34]
RW	1	PAD PULL CTRL[33]
RW	0	PAD PULL CTRL[32]

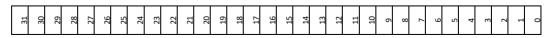

Bit	Туре	Reset	Symbol	Description
31-30	R	0	RSVD	Reserved
29-0	RW	2AAAAA AAh	PAD_PULL_CTRL[62-32]	Every two bit control one GPIO PAD Pull Up or Pull Down; 00b = High-Z; 01b = Pull-down; 10b = Pull-up; 11b = Reserved

Table 13 RCS (RST_CAUSE_SRC)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	з	2	1	
RST CAUSE CLR	RSVD	RST CAUSE[7]	RST CAUSE[6]	RST CAUSE[5]	RST CAUSE[4]	RST CAUSE[3]	RST CAUSE[2]	RST CAUSE[1]																							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	
W1	R	R	R	Я	R	Я	R	R	R	R	R	Я	R	R	R	R	R	R	R	R	Я	R	R	R	R	Я	R	R	R	R	

Bit	Туре	Reset	Symbol	Description
31	W1	0	RST_CAUSE_CLR	Write '1' clear RESET_CAUSE bits;
30-8	R	0	RSVD	Reserved
7-0	R	x	RST_CAUSE[7-0]	<pre>xxxxxx1b = Power-on Reset; xxxxx1xb = Brown-Down Reset; xxxx1xxb = External pin Reset; xxx1xxxb = Watch Dog Reset; xxx1xxxb = Lock Up Reset; xx1xxxxb = Reboot Reset; x1000000b = CPU system Reset requirement; 10000000b = CPU software Reset;</pre>

Table 14 IOWCR (IO_WAKEUP_CTRL)

RW	0	IO VALUF[15]
RW	0	
RW	0	
RW	0	
RW	0	IO VALUE[11]
RW	0	
RW	0	IO VALUE[9]
RW	0	IO VALUE[8]
RW	0	IO VALUE[7]
RW	0	IO VALUE[6]
RW	0	IO VALUE[5]
RW	0	IO VALUE[4]
RW	0	IO VALUE[3]
RW	0	IO VALUE[2]
RW	0	IO VALUE[1]
RW	0	IO VALUE[0]
RW	0	IO WAKEUP EN[15]
RW	0	IO WAKEUP EN[14]
RW	0	IO WAKEUP EN[13]
RW	0	IO WAKEUP EN[12]
RW	0	IO WAKEUP EN[11]
RW	0	IO WAKEUP EN[10]
RW	0	IO WAKEUP EN[9]
RW	0	IO WAKEUP EN[8]
RW	0	IO WAKEUP EN[7]
RW	0	IO WAKEUP EN[6]
RW	0	IO WAKEUP EN[5]
RW	0	IO WAKEUP EN[4]
RW	0	IO WAKEUP EN[3]
RW	0	IO WAKEUP EN[2]
RW	0	IO WAKEUP EN[1]
RW	0	IO WAKEUP EN[0]

Bit	Туре	Reset	Symbol	Description
31-16	RW	0	IO_VALUE[15-0]	Control GPIO 0 ~ 15 Interrupt cause;
				0 = When GPIO x is 1, generate interrupt;
				1 = When GPIO x is 0, generate interrupt;
15-0	RW	0	IO_WAKEUP_E	Control GPIO 0 ~ 15 as Wakeup source;
			N[15-0]	0 = Disable GPIO x as Wakeup source;
				1 = Enable GPIO x as Wakeup source;

Table 15 BLESR (BLE_STATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	c
RSVD	CLK RDY	CLK XTAL32 RDY	REF PLL RDY	BG RDY	BUCK RDY	TX EN		OSC EN	CLK STATUS	RADIO EN	FREQ WORD[7]	FREQ WORD[6]	FREQ WORD[5]	FREQ WORD[4]	FREQ WORD[3]	FREQ WORD[2]	FREQ WORD[1]														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	٥

Bit	Туре	Reset	Symbol	Description
31-18	R	0	RSVD	Reserved
17	R	0	CLK_RDY	16MHz/32MHz XTAL is ready
16	R	0	CLK_XTAL32_RDY	32KHz XTAL is ready
15	R	0	REF_PLL_RDY	REF PLL is ready
14	R	1	FLSH_LOCATION	1 = Internal Flash 0 = External Flash
13	R	0	BUCK_RDY	BUCK power is ready
12	R	0	TX_EN	QN902X is in transmit state;
11	R	0	RX_EN	QN902X is in receive state;
10	R	0	OSC_EN	BLE IP osc_en output;
9	R	0	CLK_STATUS	BLE IP clk_status output;
8	R	0	RADIO_EN	BLE IP radio_en output;
7-0	R	0	FREQ_WORD[7-0]	BLE Frequency Word;

Table 16 SMR (SYS_MODE_REG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	6	5	4	З	2	1	0
BOOT MODE	EN SW MAP		RSVD	RAM BIST FAIL	RAM BIST END	ROM BIST FAIL	ROM BIST END	BIST START	TEST MOD																						
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RWH	RW	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW	RW

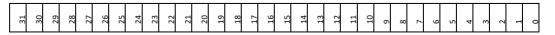

Bit	Туре	Reset	Symbol	Description
31	RWH	1	BOOT_MODE	Must write '1'
30	RW	0	EN_SW_MAP	1 = Enable SW ReMap;
29-6	R	0	RSVD	Reserved
5	R	0	RAM_BIST_FAIL	Reserved
4	R	0	RAM_BIST_END	Reserved
3	R	0	ROM_BIST_FAIL	Reserved
2	R	0	ROM_BIST_END	Reserved
1	RW	0	BIST_START	Reserved. Must write '0'
0	RW	0	TEST_MOD	Reserved. Must write '0'

Table 17 CHIP_ID

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	m	2	1	0
RSVD	CHIP ID[15]		CHIP ID[13]	CHIP ID[12]	CHIP ID[11]	CHIP ID[10]	CHIP ID[9]	CHIP ID[8]		CHIP ID[6]	CHIP ID[5]	CHIP ID[4]		CHIP ID[2]	CHIP ID[1]																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	Я	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Туре	Reset	Symbol	Description
31-16	R	0	RSVD	Reserved
15-0	R	2901h	CHIP_ID[15-0]	QN902X CHIP ID

Table 18 PGCR0 (POWER_GATING_CTRL0)

RW	1	SEL PD
RW	1	PD OSC
RW	1	PD BG
RW	1	PD V2I
RW	1	PD BUCK
RW	1	PD VREG A
RW	1	VREG 1
RW	1	PD XT/
RW	0	
RW	1	DIV RST SYNC
RW	1	D LO
RW	1	D LO
RW	1	0
RW	1	
RW	1	PD LNA PKDET
RW	1	PD MIXER
RW	1	PD PPF PKDET
RW	1	
RW	1	PD RX PKDET
RW	1	PD RX ADC
RW	1	PD SAR ADC
RW	0	
RW	1	BOND EN
Я	0	ĩo
RW	0	PD MEM7
RW	0	PD MEM6
RW	0	PD MEM5
RW	0	PD MEM4
RW	0	PD MEM3
RW	0	PD MEM2
RW	0	PD MEM1
RW	0	PL VREG D
	1	Î

Bit	Туре	Reset	Symbol	Description
31	RW	1	SEL_PD	BLE radio sub-block (LO_VCO,)power control selection 0 = Controlled by individual register bit, DIS_xxx 1 = Automatically controlled by BLE baseband hardware
30	RW	1	PD_OSC	Reserved. Must write '1'
29	RW	1	PD_BG	Reserved. Must write '1'
28	RW	1	PD_V2I	Reserved. Must write '1'
27	RW	1	PD_BUCK	While DC-DC enabled, write '0'; While DC-DC disabled, write '1';
26	RW	1	PD_VREG_A	Reserved. Must write '1'
25	RW	1	PD_VREG_D	Reserved. Must write '1'
24	RW	1	PD_XTAL	Reserved. Must write '1'
23	RW	0	PD_XTAL32	1 = Switch off 32KHz XTAL power in sleep mode 0 = Switch on 32KHz XTAL power in sleep mode
22	RW	1	DIV_RST_SYNC	Reserved. Must write '1'
21	RW	1	PD_LO_VCO	Reserved. Must write '1'
20	RW	1	PD_LO_PLL	Reserved. Must write '1'
19	RW	1	PD_PA	Reserved. Must write '1'
18	RW	1	PD_LNA	Reserved. Must write '1'
17	RW	1	PD_LNA_PKDET	Reserved. Must write '1'
16	RW	1	PD_MIXER	Reserved. Must write '1'
15	RW	1	PD_PPF_PKDET	Reserved. Must write '1'
14	RW	1	PD_PPF	Reserved. Must write '1'
13	RW	1	PD_RX_PKDET	Reserved. Must write '1'
12	RW	1	PD_RX_ADC	Reserved. Must write '1'
11	RW	1	PD_SAR_ADC	Reserved. Must write '1'
10	RW	0	PD_RCO	1 = Switch off 32KHz RC power in sleep mode 0 = Switch on 32KHz RC power in sleep mode
9	RW	1	BOND_EN	1 = Enable bond option; 0 = Disable bond option;

UM10996

				Must write 1 for QN9020 and QN9021; can keep 0 for QN9022.
8	R	0	RSVD	Reserved
7	RW	0	PD_MEM7	1 = Switch off memory 7 power in sleep mode 0 = Switch on memory 7 power in sleep mode
6	RW	0	PD_MEM6	1 = Switch off memory 6 power in sleep mode 0 = Switch on memory 6 power in sleep mode
5	RW	0	PD_MEM5	1 = Switch off memory 5 power in sleep mode 0 = Switch on memory 5 power in sleep mode
4	RW	0	PD_MEM4	1 = Switch off memory 4 power in sleep mode 0 = Switch on memory 4 power in sleep mode
3	RW	0	PD_MEM3	1 = Switch off memory 3 power in sleep mode 0 = Switch on memory 3 power in sleep mode
2	RW	0	PD_MEM2	1 = Switch off memory 2 power in sleep mode 0 = Switch on memory 2 power in sleep mode
1	RW	0	PD_MEM1	1 = Switch off memory 1 power in sleep mode 0 = Switch on memory 1 power in sleep mode
0	RW	0	PL_VREG_D	Low power mode, write '0'. Otherwise, write '1'

Table 19 PGCR1 (POWER_GATING_CTRL1)

V21 V21 kUCK 6 A 6 D 6 D 4132 PLL VCO VCO PLL
UCK G D G D PLL PLL PLL PLL
G A G D C C C C C C C C C C C C C C C C C C
G D XTAL AL32 PLL VCO VCO PLL
XTAL AL32 PLL VCO PLL PLL
AL32 PLL VCO 5 PA
PLL VCO 5 PA
VCO PLL 5 PA
LO PLL DIS PA
DIS LNA 18
DIS LNA PKDET 17
DIS MIXER 16
DIS PPF PKDET 15
DIS PPF 14
DIS RX PKDET 13
DIS RX ADC 12
DIS SAR ADC 11
DIS RCO 10
RSVD 9
RSVD 8
DIS MEM7 7
DIS MEM6 6
DIS MEM5 5
MEM3
MEM2
MEM1
DIS SAR BUF 0

Bit	Туре	Reset	Symbol	Description
31	RW	1	VDD_RCO_SET	1 = Set RCO VDD high
				0 = Set RCO VDD low (~200mV difference)
30	RW	0	DIS_OSC	1 = Switch off 40MHz oscillator power
				0 = Switch on 40MHz oscillator power
29	RW	0	DIS_BG	1 = Switch off bandgap power
				0 = Switch on bandgap power
28	RW	0	DIS_V2I	1 = Switch off IVREF power
				0 = Switch on IVREF power
27	RW	0	DIS_BUCK	1 = Switch off buck converter power
				0 = Switch on buck converter power
26	RW	0	DIS_VREG_A	1 = Switch off VREG of analog power
				0 = Switch on VREG of analog power
25	RW	0	DIS_VREG_D	1 = Switch off VREG of digital power
				0 = Switch on VREG of digital power
24	RW	0	DIS_XTAL	1 = Switch off 16/32MHz XTAL power
				0 = Switch on 16/32MHz XTAL power
23	RW	0	DIS_XTAL32	1 = Switch off 32KHz XTAL power
				0 = Switch on 32KHz XTAL power

22	RW	1	DIS_REF_PLL	1 = Switch off REF PLL power
				0 = Switch on REF PLL power
21	RW	1	DIS_LO_VCO	LO VCO power control, only effective when SEL_PD=0
				1 = Switch off VCO of LO PLL power
20		1		0 = Switch on VCO of LO PLL power
20	RW	1	DIS_LO_PLL	LO VCO power control, only effective when SEL_PD=0 1 = Switch off LO PLL power
				0 = Switch on LO PLL power
19	RW	1	DIS_PA	LO VCO power control, only effective when SEL_PD=0
19	L AA	T	DIS_PA	1 = Switch off Tx PA power
				0 = Switch on Tx PA power
18	RW	1	DIS LNA	LO VCO power control, only effective when SEL PD=0
10	1.00	1	DIS_ENA	1 = Switch off Rx LNA power
				0 = Switch on Rx LNA power
17	RW	1	DIS LNA PKDET	LO VCO power control, only effective when SEL PD=0
17		-		1 = Switch off Rx LNA peak detector power
				0 = Switch on Rx LNA peak detector power
16	RW	1	DIS MIXER	LO VCO power control, only effective when SEL PD=0
		-	2.0	1 = Switch off Rx MIXER power
				0 = Switch on Rx MIXER power
15	RW	1	DIS_PPF_PKDET	LO VCO power control, only effective when SEL PD=0
				1 = Switch off Rx PPF peak detector power
				0 = Switch on Rx PPF peak detector power
14	RW	1	DIS_PPF	LO VCO power control, only effective when SEL PD=0
			-	1 = Switch off Rx PPF power
				0 = Switch on Rx PPF power
13	RW	1	DIS_RX_PKDET	LO VCO power control, only effective when SEL_PD=0
				1 = Switch off Rx peak detector 3 power
				0 = Switch on Rx peak detector 3 power
12	RW	1	DIS_RX_ADC	LO VCO power control, only effective when SEL_PD=0
				1 = Switch off Rx ADC power
				0 = Switch on Rx ADC power
11	RW	1	DIS_SAR_ADC	1 = Switch off SAR ADC power
				0 = Switch on SAR ADC power
10	RW	1	DIS_RCO	1 = Switch off 32KHz RC power
				0 = Switch on 32KHz RC power
9	R	0	RSVD	Reserved
8	R	0	RSVD	Reserved
7	RW	0	DIS MEM7	1 = Switch off memory 7 power
		-	_	0 = Switch on memory 7 power
6	RW	0	DIS MEM6	1 = Switch off memory 6 power
			_	0 = Switch on memory 6 power
5	RW	0	DIS MEM5	1 = Switch off memory 5 power
				0 = Switch on memory 5 power
4	RW	0	DIS_MEM4	1 = Switch off memory 4 power
				0 = Switch on memory 4 power
3	RW	0	DIS_MEM3	1 = Switch off memory 3 power
				0 = Switch on memory 3 power
2	RW	0	DIS_MEM2	1 = Switch off memory 2 power
				0 = Switch on memory 2 power
1	RW	0	DIS_MEM1	1 = Switch off memory 1 power
				0 = Switch on memory 1 power

QN902x User Manual of QN902x

0	RW	0	DIS_SAR_BUF	1 = Switch off SAR buffer
				0 = Switch on SAR buffer

Table 20 PGCR2 (POWER_GATING_CTRL2)

£	0		č
		KSVE	31
Я	0	RSVE	30
R	0	RSVE	29
R	0	RSVE	28
R	0	RSVE	27
R	0	RSVE	26
R	0	RSVE	25
R	0	RSVE	24
R	0	RSVE	23
R	0	RSVE	22
R	0	RSVE	21
R	0	RSVE	20
Я	0	RSVE	19
Я	0	RSVE	18
RW	0	VREG12 A BAK[1]	17
RW	1	VREG12 A BAK[0]	16
Я	0	RSVE	15
Я	0	RSVE	14
Я	0	RSVE	13
Я	0	RSVE	12
R	0	RSVE	11
Я	0	RSVE	10
R	0	RSVE	6
RW	1	OSC WAKUP EN	8
RW	0	RTCI PIN SEL	7
RW	0	PD STATE	9
RW	0	BD AMP EN	5
RW	0	DVDD12 PMU SET	4
RW	0	RX EN SEL	m
RW	1	FLASH VCC EN	2
RW	1	PMUENABLE	Ч
RW	1	DBGPMUENALBE	0

Description of Word

Bit	Туре	Reset	Name	Description
31-18	R	0h	RSVE	
17-16	RW	01b	VREG12_A_BAK[1-0]	1.2V regulator for analog output voltage selection
				11 = 1.3V
				10 = 1.2V
				01 = 1.1V
				00 = 1.0V
15-9	R	0	RSVE	Reserved
8	RW	1	OSC_WAKEUP_EN	1 is Enable OSC_EN as wakeup source
_	RW	0	RTCI_PIN_SEL	0 = RTC Capture is connected with P0_0;
7				1 = RTC Capture is connected with PO_4;
6	RW	0	PD_STATE	Enable or disable wakeup source selection. Write
				'1' before entering sleep mode. Write '0' after
				wakeup.
				0 = Normal;
				1 = Sleep;
5	RW	0	BD_AMP_EN	1 is Enable comparator of brown-out detector. It
				should be set earlier than EN_BD 2us or more.
4	RW	0	DVDD12_PMU_SET	Write '1' before entering sleep mode. Write '0'
				after wakeup.
				0 = High VDD_PMU in sleep mode
				1 = Low VDD_PMU in sleep mode
3	RW	0	RX_EN_SEL	Reserved, must write '1';
2	RW	1	FLASH_VCC_EN	1 = Open Flash Power;
				0 = Close Flash Power;
1	RW	1	PMUENABLE	1 = Enable CPU power down operation mode;
				0 = Disable CPU power down operation mode;
0	RW	1	DBGPMUENABLE	Reserved

Table 21 GCR (GAIN_CTRL)

Ŀ	SEL	BOOST 30	PA[1] 29	PA[0] 28	GAIN[3] 27	GAIN[2] 26		GAIN[0] 24			12[1] 21	GAIN2[0] 20	GAIN[3] 19	GAIN[2] 18	GAIN[1] 17	GAIN[0] 16	RSVD 15	_	WEN 13	WEN 12	HG[2] 11	HG[1] 10		HG[0] 9								
		PA GAIN BC	BM P	BM P	PA GAI	PA GAI		PA GAI		LNA GAIN1[0]	LNA GAIN2[1]	LNA GAIN	PPF GAI	PPF GAI	PPF GAI	PPF GAI	R	æ	LNA GAIN V	PPF GAIN V	VT PKDET1 H	VT PKDET1 H		VT PKDET1 H	PKDET1	PKDET1 PKDET1 PKDET1						
0	0)	1	0	1	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1		1	1 0	1 0 1	1 0 1 1	1 0 1 1 0	1 0 1 1 0 1	1 0 1 1 0 1 0	1 0 1 1 0 1 0 0
1410	NN N	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	R	Я	RW	RW	RW	RW	RW		RW	RW RW	RW RW	RW RW RW	RW RW RW RW RW	RW RW RW RW RW	RW RW RW RW RW RW	RW RW RW RW RW RW RW RW

Bit	Туре	Reset	Symbol	Description
31	RW	0	TX_PWR_SEL	Reserved. Write '0'
30	RW	0	PA_GAIN_BOOST	Reserved. Write '0'
29-28	RW	10b	BM_PA[1-0]	Reserved. Write '10b'
27-24	RW	1101b	PA_GAIN[3-0]	Together with PA_GAIN[4],PA_GAIN[0-4] means: 111114dBm 011113dBm 11101dBm 01101
23-22	RW	0	LNA_GAIN1[1-0]	Reserved. Write '00'
21-20	RW	0	LNA_GAIN2[1-0]	Reserved. Write '00'
19-16	RW	1000b	PPF_GAIN[3-0]	Reserved. Write '1000b'
15-14	R	0	RSVD	Reserved
13	RW	0	LNA_GAIN_WEN	Reserved. Write '0'
12	RW	0	PPF_GAIN_WEN	Reserved. Write '0'
11-9	RW	101b	VT_PKDET1_HG[2-0]	Reserved. Write '101b'

8-6	RW	101b	VT_PKDET1_MG[2-0]	Reserved. Write '101b'
5-3	RW	101b	VT_PKDET1_LG[2-0]	Reserved. Write '101b'
2	R	0	RSVD	Reserved
1	RW	0	VT_PKDET2	Reserved. Write '0'
0	RW	0	VT_PKDET3	Reserved. Write '0'

Table 22 IVREF_X32

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	ю	2	1	0
BGSEL[3]	BGSEL[2]	BGSEL[1]	BGSEL[0]	VREG15[1]	VREG15[0]	VREG12 A[1]	VREG12 A[0]	TR SWITCH	BM PKDET3[1]	BM PKDET3[0]	VREG12 D[1]	VREG12 D[0]	DVDD12 SW EN	BUCK BYPASS	BUCK DPD	BUCK ERR ISEL[1]	BUCK ERR ISEL[0]	BUCK VBG[1]	BUCK VBG[0]	X32SMT EN	X32BP RES	BM X32BUF[1]	BM X32BUF[0]	X32INJ[1]	X32INJ[0]	X32ICTRL[5]	X32ICTRL[4]	X32ICTRL[3]	X32ICTRL[2]	X32ICTRL[1]	X32ICTRL[0]
1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Bit	Туре	Reset	Symbol	Description
31-28	RW	1000b	BGSEL[3-0]	Bandgap voltage selection to compensate PVT variations 8 steps with 5mV each upward. VBG=1225+5*BGSEL
27-26	RW	10b	VREG15[1-0]	1.5V regulator for analog output voltage selection 11b = 1.6V 10b = 1.6V 01b = 1.5V 00b = 1.4V
25-24	RW	01b	VREG12_A[1-0]	1.2V regulator for analog output voltage selection 11b =1.3V 10b = 1.2V 01b = 1.1V 00b =1.0V
23	R	0	TR_SWITCH	0 = Always use VREG12_A,BUCK_TMOS and BUCK_BM; 1 = RX use VREG12_A, BUCK_TMOS and BUCK_BM, TX use VREG12_A_BAK,BUCK_TMOS_BAK,BUCK_BM_BAK;

UM10996

22-21	RW	01b	BM PKDET3[1-0]	PKDET3 bias current setting
~~ ~ 1		010		11 = 125%
				10 = 100%
				01 = 75%
				00 = 50%
20-19	RW	10b	VREG12_D[1-0]	1.2V regulator for digital (dvdd12_core) output
				voltage selection
				11b = 1.3V
				10b = 1.2V
				01b = 1.1V
				00b = 1.0V
18	RW	0	DVDD12_SW_EN	1 = Enable switch on between dvdd12_core and
				dvdd12_pmu
17	RW	0	BUCK_BYPASS	Bypass buck converter
16	RW	0	BUCK DPD	DC-DC power down without waiting current crossing
10		Ũ	book_brb	zero.
15-14	RW	1	BUCK ERR ISEL[1-	DC-DC error amplifier current adjustment.
13-14	11.00	1	0]	00b = 15uA,
			0]	01b = 20uA,
				10b = 25uA,
				10b = 250A, 11b = 30uA.
12 12		0		
13-12	RW	0	BUCK_VBG[1-0]	DC-DC Bandgap output voltage adjustment.
11	RW	0	X32SMT_EN	Reserved. Write '0'
10	RW	0	X32BP_RES	Bypass source degeneration resistor in the core of
				32.768KHz XTAL.
9-8	RW	10b	BM X32BUF[1-0]	Bias current control of 32.768KHz buffer
				00b = 100nA
				01b = 200nA
				10b = 500nA
				11b = 600nA
7-6	RW	01	X32INJ[1-0]	Select 32.768KHz XTAL clock source
				00b = Use crystal oscillator between XTAL1/XTAL2
				01b = Digital clock injection to XTAL1
				10b = Single-end sine wave injection to XTAL1
				11b = Differential since wave injection to XTAL1/
				XTAL2
				ATALZ
5-0	RW	10000	X32ICTRL[5-0]	32.768KHz crystal bias current control

Table 23 XTAL_BUCK

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	
NC	XINJ[1]	lojrnix	XICTRL[5]	XICTRL[4]	XICTRL[3]	XICTRL[2]	XICTRL[1]	XICTRL[0]	XCSEL[5]	XCSEL[4]	XCSEL[3]	XCSEL[2]	XCSEL[1]	XCSEL[0]	XSMT EN	BUCK VTHL[1]	BUCK VTHL[0]	BUCK VTHH[1]	BUCK VTHH[0]	BUCK TMOS[2]	BUCK TMOS[1]	BUCK TMOS[0]	BUCK FC	BUCK AGAIN	BUCK ADRES	BUCK BM[1]	BUCK BM[0]	TST CPREF[3]	TST CPREF[2]	TST CPREF[1]	
0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	1	0	0	1	0	1	0	0	1	0	
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	

UM10996

Bit	Туре	Reset	Symbol	Description
31	RW	0	NC	No Connected;
30-29	RW	0	XINJ[1-0]	Select high frequency XTAL clock source 00b = Use crystal oscillato r between XTAL1/XTAL2 01b = Digital clock injection to XTAL1 10b = Single-end sine wave injection to XTAL1 11b = Differential sine wave injection to XTAL1/ XTAL2
28-23	RW	10000 0b	XICTRL[5-0]	High frequency crystal bias current control For 16MHz XTAL: IB=80uA*XICTRL/64 For 32MHz XTAL: IB=160uA*XICTRL/64
22-17	RW	10000 0b	XCSEL[5-0]	Crystal oscillator cap loading selection. The loading cap on each side is 10+XCSEL*0.32pF. It ranges from 10pF to 30pF, while the default is 20pF.
16	RW	0	XSMT_EN	Reserved. Write '0'
15-14	RW	01b	BUCK_VTHL[1-0]	Reserved. Write '01b'
13-12	RW	1	BUCK_VTHH[1-0]	Reserved. Write '11b'
11-9	RW	010b	BUCK_TMOS[2-0]	Reserved. Write '010b'
8	RW	0	BUCK_FC	Reserved. Write '0'
7	RW	1	BUCK_AGAIN	Reserved. Write '1'
6	RW	0	BUCK_ADRES	Reserved. Write '0'
5-4	RW	10b	BUCK_BM[1-0]	Reserved. Write '10b'
3-0	RW	0101b	TST_CPREF[3-0]	Reserved. Write '0101b'

Table 24 LO1

/ 31				1 27	1 26		1 24			1 21	1 20	19	1 18	1 17	1 16	15	1 14	1 13	1 12	u 11	1 10	6	8	1 7	9	5	4	3	1 2	
VIUX	LO TEST INT	TST C	LO TST CP[2]	LO TST CP[1]	LO TST CP[0]	ΓO	LO BM FIL[1]		LO BM DAC[1]	LO BM DAC[0]	LO BM CML C[1]	LO BM CML C[0]	LO BM CML D[1]	LO BM CML D[0]	LO BM BVCO[1]	LO BM BVCO[0]	LO VCO AMP[2]	LO VCO AMP[1]	LO VCO AMP[0]	PMUX EN	PA PHASE[1]	PA PHASE[0]	DAC TEST EN	DAC TEST[7]	DAC TEST[6]	DAC TEST[5]	DAC TEST[4]	DAC TEST[3]	DAC TEST[2]	
0	0	0	1	0	1	0	0	1	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
Wa	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	

Bit	Туре	Reset	Symbol	Description
31	RW	0	XDIV	XTAL frequency selection
				0 = 16MHz
				1 = 32MHz
30	RW	0	LO_TEST_INT	Reserved. Write '0'
29-26	RW	0101b	LO_TST_CP[3-0]	Reserved. Write '0101b'

25	RW	0	LO_ICPH	Reserved. Write '0'
24-23	RW	01b	LO_BM_FIL[1-0]	Reserved. Write '01b'
22-21	RW	01b	LO_BM_DAC[1- 0]	Reserved. Write '01b'
20-19	RW	01b	LO_BM_CML_C[1-0]	Reserved. Write '01b'
18-17	RW	01b	LO_BM_CML_D [1-0]	Reserved. Write '01b'
16-15	RW	01b	LO_BM_BVCO[1 -0]	Reserved. Write '01b'
14-12	RW	100b	LO_VCO_AMP[2 -0]	Reserved. Write '100b'
11	RW	0	PMUX_EN	Reserved. Write '0'
10-9	RW	0	PA_PHASE[1-0]	Reserved. Write '0'
8	RW	0	DAC_TEST_EN	Reserved. Write '0'
7-0	RW	0	DAC_TEST[7-0]	Reserved. Write '0'

Table 25 ADCCR

V	1		31
	0	0//30	30
N	1		29
W	0		28
RW	1	SPEED UP TIME[7]	27
RW	1	SPEED UP TIME[6]	26
RW	1	٩U	25
RW	0	SPEED UP TIME[4]	24
RW	1	SPEED UP TIME[3]	23
RW	1	SPEED UP TIME[2]	22
RW	1	٩U	21
RW	1	SPEED UP TIME[0]	20
R	0	RSVD	19
RW	0	CK DAC DLY	18
RW	1	BYPASS TESTBUF	17
RW	0	SEL TEST EN	16
RW	0	TESTREG[7]	15
RW	0	TESTREG[6]	14
RW	0	TESTREG[5]	13
RW	0	TESTREG[4]	12
RW	0	TESTREG[3]	11
RW	0	TESTREG[2]	10
RW	0	TESTREG[1]	6
RW	0	TESTREG[0]	8
	0	RSVD	7
RW	1	ADC DIG RST	9
RW	0	ADC CLK SEL	5
RW	0	ADC DIV BYPASS	4
RW	0	ADC DIV[3]	m
RW	1	ADC DIV[2]	2
RW	1	ADC DIV[1]	1
	1		c

Bit	Туре	Reset	Symbol	Description
31-28	R	0	RSVD	Reserved
27-20	RW	11101111b	SPEED_UP_TIM	Reserved, write '11101111b'
			E[7-0]	
19	R	0	RSVD	Reserved
18	RW	0	CK_DAC_DLY	Reserved
17	RW	1	BYPASS_TESTBU	Reserved
17		T	F	
16	RW	0	SEL_TEST_EN	Reserved
15-8	RW	0	TESTREG[7-0]	Reserved
7	R	0	RSVD	Reserved
6	RW	1	ADC_DIG_RST	0 = Reset SAR ADC digital Interface;
5	RW	0	ADC_CLK_SEL	Select ADC source Clock
				0 = 16MHz, 1: 32KHz
4	RW	0	ADC_DIV_BYPA	'1' is bypass ADC Divider;
			SS	
3-0	RW	0111b	ADC_DIV[3-0]	If ADC_DIV_BYPASS is '0',

ANALOG_CTRL

RW	0	ACMP0[3]	31
RW	0	ACMP0[2]	30
RW	0	ACMP0[1]	29
RW	0	ACMP0[0]	28
RW	0	ACMP1[3]	27
RW	0	ACMP1[2]	26
RW	0	ACMP1[1]	25
RW	0	ACMP1[0]	24
RW	0	BD[1]	23
RW	0	BD[0]	22
RW	0	EN ACMPO	21
RW	0	EN ACMP1	20
RW	0	EN BT	19
RW	0	EN BD	18
RW	0	EN TS	17
RW	0	ACMP1 VALUE	16
RW	0	ACMP0 VALUE	15
RW	0	ACMP1 HYST	14
RW	0	ACMP2 HYST	13
RW	0	AIN3 EN	12
RW	0	AIN2 EN	11
RW	0	AIN1 EN	10
RW	0	AINO EN	6
RW	0	BUCK PMDR	8
RW	0	BUCK NMDR	7
RW	0	PA GAIN[4]	6
RW	0	XSP CSEL	5
RW	0	SLEEP TRIG	4
RW	1		3
RW	1	NC[3-0]	2
RW	1		1
RW	1		0

Description of Word

Bit	Туре	Reset	Name	Description
31-28	RW	0000b	ACMP0[3-0]	Comparator 0 reference voltage selection
				0000b = Select external reference voltage
				0001b = Select internal reference voltage (1/16
				VDD)
				0010b = Select internal reference voltage (2/16
				VDD)
				0011b = Select internal reference voltage (3/16
				VDD)
				0100b = Select internal reference voltage (4/16
				VDD)
				0101b = Select internal reference voltage (5/16
				VDD)
				0110b = Select internal reference voltage (6/16
				VDD)
				0111b = Select internal reference voltage (7/16
				VDD)
				1000b = Select internal reference voltage (8/16
				VDD)
				1001b = Select internal reference voltage (9/16
				VDD)
				1010b = Select internal reference voltage (10/16
				VDD)
				1011b = Select internal reference voltage (11/16
				VDD)
				1100b = Select internal reference voltage (12/16
				VDD)
				1101b = Select internal reference voltage (13/16
				VDD)
				1110b = Select internal reference voltage (14/16
				VDD)
				1111b = Select internal reference voltage (15/16
				VDD)

27-24 0000b ACMP1[3-0] 0000b Select internal reference voltage (1/16 VDD) 27-24 0000b ACMP1[3-0] 0100b = Select internal reference voltage (2/16 VDD) 27-24 0000b ACMP1[3-0] 0100b = Select internal reference voltage (4/16 VDD) 27-24 0000b ACMP1[3-0] 0100b = Select internal reference voltage (5/16 VDD) 0110b = Select internal reference voltage (7/16 VDD) 0110b = Select internal reference voltage (7/16 VDD) 0110b = Select internal reference voltage (8/16 VDD) 0100b = Select internal reference voltage (8/16 VDD) 0101b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 23-22 00b BD[1-0] Browned out detector threshold voltage selection 00b = 1.76V 21 RW 0 EN_ACMP0 1 is Enable comparator 0 20 RW 0 EN_BT		RW			Comparator 1 reference voltage selection	
27-24 0000b ACMP1[3-0] 0001b Select internal reference voltage (2/16 VDD) 27-24 0000b ACMP1[3-0] 0100b Select internal reference voltage (3/16 VDD) 27-24 0000b ACMP1[3-0] 0100b Select internal reference voltage (6/16 VDD) 0111b Select internal reference voltage (6/16 VDD) 0111b Select internal reference voltage (6/16 VDD) 0111b Select internal reference voltage (6/16 VDD) VDD) 0111b Select internal reference voltage (7/16 VDD) 0111b Select internal reference voltage (1/16 VDD) VDD) 1010b Select internal reference voltage (1/16 VDD) 1010b Select internal reference voltage (1/16 VDD) 1010b Select internal reference voltage (1/16 VDD) 1010b Select internal reference voltage (1/16 VDD) 1010b Select internal reference voltage (1/16 VDD) 1110b Select internal reference voltage (1/16 VDD) 1010b Select internal reference voltage (1/16 VDD) 23-22 000b BD[1-0] Browned out detector threshold voltage selection 00b 1.76V 21 RW 0 EN_ACMP0 1 is Enable comparator 0		r.vv				
27-24 0000b ACMP1[3-0] 0010b = Select internal reference voltage (2/16 VDD) 27-24 0000b ACMP1[3-0] 0110b = Select internal reference voltage (5/16 VDD) 27-24 0000b ACMP1[3-0] 0110b = Select internal reference voltage (6/16 VDD) 0110b = Select internal reference voltage (6/16 VDD) 0110b = Select internal reference voltage (6/16 VDD) 0111b = Select internal reference voltage (8/16 VDD) 0100b = Select internal reference voltage (8/16 VDD) 0101b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1110b = Select internal reference voltage (12/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 23-22 00b BD[1-0] 111b = Select internal reference voltage (15/16 VDD) 21 RW 0 EN_ACMP1 1 is Enable comparator 0 20 RW 0 EN_BD 1 is Enable comparator 1 19 RW 0 EN_BD 1 is Enable battery monitor						
27-24 0000b ACMP1[3-0] 0010b = Select internal reference voltage (3/16 VDD) 0100b = Select internal reference voltage (4/16 VDD) 0100b = Select internal reference voltage (5/16 VDD) 0110b = Select internal reference voltage (6/16 VDD) 0110b = Select internal reference voltage (6/16 VDD) 0110b = Select internal reference voltage (7/16 VDD) 0100b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (9/16 VDD) 1001b = Select internal reference voltage (10/16 VDD) 1001b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1101b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 11110b = Select internal reference voltage (13/16 VDD) 11110b = Select internal reference voltage (14/16 VDD) 11110b = Select internal reference voltage (14/16 VDD) 11110b = Select internal reference voltage (14/16 VDD) 11110b = Select internal reference voltage (14/16 VDD) 23-22 00b BD[1-0] Browned out detector threshold voltage selection 00b = 1.7V 01b = 1.7V 01b = 1.6V 21 RW 0 EN_ACMP1 1 is Enable comparator 0 20 RW 0 EN_BD 1 is Enable battery monitor 18 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_BD 1 is Enable browned out detector 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1,						
27-24 0000b ACMP1[3-0] VDD) 0011b = Select internal reference voltage (3/16 VDD) 0100b = Select internal reference voltage (5/16 VDD) 0111b = Select internal reference voltage (5/16 VDD) 0111b = Select internal reference voltage (5/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (9/16 VDD) 1000b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1011b = Select internal reference voltage (12/16 VDD) 1011b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (13/16 VDD) 23-22 00b BD[1-0] Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.65V 11b = 1.6V 21 RW 0 EN_ACMP0 1 is Enable comparator 0 20 RW 0 EN_BD 1 is Enable battery monitor 18 RW 0 EN_BD 1 is Enable battery monitor 18 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
27-24 0000b ACMP1[3-0] VDD) 27-24 0000b ACMP1[3-0] VDD) 0110b = Select internal reference voltage (5/16 VDD) 0111b = Select internal reference voltage (6/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (9/16 VDD) 1001b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1011b = Select internal reference voltage (12/16 VDD) 1011b = Select internal reference voltage (12/16 VDD) 1111b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 11111b = Select internal reference voltage (15/16						
27-24 0000b ACMP1[3-0] VDD) 27-24 0000b ACMP1[3-0] VDD) 0110b = Select internal reference voltage (5/16 VDD) 0111b = Select internal reference voltage (6/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (9/16 VDD) 1001b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1011b = Select internal reference voltage (12/16 VDD) 1011b = Select internal reference voltage (12/16 VDD) 1111b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 11111b = Select internal reference voltage (15/16					0011b = Select internal reference voltage (3/16	
27-240000bACMP1[3-0]VDD) 0110b = Select internal reference voltage (5/16 VDD) 0110b = Select internal reference voltage (7/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (10/16 VDD) 1001b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (15/16 VDD) 1110b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.76V 01b = 1.65V21RW0EN_ACMP01 is Enable comparator 020RW0EN_BT1 is Enable comparator 119RW0EN_BD1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'<						
27-240000bACMP1[3-0]0101b = Select internal reference voltage (5/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1010b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (15/16 VDD) 1110b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]BD BD 1.6V24RW0EN_ACMP01 is Enable comparator 025RW0EN_ACMP11 is Enable comparator 119RW0EN_BD1 is Enable battery monitor18RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interru					0100b = Select internal reference voltage (4/16	
27-240000bACMP1[3-0]VDD) 0111b = Select internal reference voltage (6/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1101b = Select internal reference voltage (11/16 VDD) 1101b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.70V 01b = 1.65V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable battery monitor18RW0EN_BD1 is Enable battery monitor18RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; <t< td=""><td></td><td></td><td></td><td></td><td>VDD)</td></t<>					VDD)	
27-240000bACMP1[3-0]0110b = Select internal reference voltage (6/16 VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (15/16 VDD) 1110b = 1.76V 00b = 1.76V 00b = 1.76V 00b = 1.65V 11b = 1.6V23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.6V23-2200bEN_ACMP01 is Enable comparator 024RW0EN_ACMP11 is Enable comparator 025RW0EN_ACMP11 is Enable battery monitor18RW0EN_BD1 is Enable bowned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					0101b = Select internal reference voltage (5/16	
27-240000bACMP1[3-0]VDD) 0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1000b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (15/16 VDD) 1110b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.7V 10b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BD1 is Enable battery monitor18RW0EN_BD1 is Enable bowned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt;					,	
27-240000bACMP1[3-0]0111b = Select internal reference voltage (7/16 VDD) 1000b = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1100b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.75V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BD1 is Enable battery monitor18RW0EN_BD1 is Enable bowned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					0110b = Select internal reference voltage (6/16	
27-240000bACMP1[3-0]VDD 1000b = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (9/16 VDD) 1011b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1101b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V23-2200bBD[1-0]01 = Select internal reference voltage selection 00b = 1.76V23-2200bBD[1-0]11 is Enable comparator 020RW0EN_ACMP01 is Enable comparator 020RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
27-24 0000b ACMP1[3-0] 1000b = Select internal reference voltage (8/16 VDD) 1010b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 23-22 00b BD[1-0] Browned out detector threshold voltage selection 00b = 1.76V 23-22 00b BD[1-0] 11b = 1.6V 23-22 00b BD[1-0] 11b = 1.6V 21 RW 0 EN_ACMP0 1 is Enable comparator 0 20 RW 0 EN_BT 1 is Enable comparator 1 19 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_BD 1 is Enable browned out detector 17						
10000 = Select internal reference voltage (8/16 VDD) 1001b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1010b = Select internal reference voltage (11/16 VDD) 1010b = Select internal reference voltage (12/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1110b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16	27-24		0000b	ACMP1[3-0]	,	
1001b = Select internal reference voltage (9/16 VDD) 1010b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
VDD) 1010b = Select internal reference voltage (10/16 VDD) 1011b = Select internal reference voltage (11/16 VDD) 1101b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage selection 00b = 1.76V 00b = 1.76V 00b = 1.76V 00b = 1.70V 10b = 1.65V 11b = 1.6V23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.6V23-2200bBD[1-0]I is Enable comparator 024RW0EN_ACMP01 is Enable comparator 025RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;15RW0ACMP0_VALUE0 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					,	
Image: Construct of the second seco					-	
VDD) 1011b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;15RW0ACMP0_VALUE0 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					7	
1011b = Select internal reference voltage (11/16 VDD) 1100b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BD1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
VDD) 1100b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable borowned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					,	
1100b = Select internal reference voltage (12/16 VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					• · · ·	
VDD) 1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					,	
1101b = Select internal reference voltage (13/16 VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (14/16 VDD)23-22RW 00bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW 0EN_ACMP01 is Enable comparator 020RW 0EN_ACMP11 is Enable battery monitor19RW 0EN_BD1 is Enable battery monitor18RW 0EN_BD1 is Enable browned out detector17RW 0EN_TSReserved, Write '0'16RW 0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
VDD) 1110b = Select internal reference voltage (14/16 VDD) 1111b = Select internal reference voltage (15/16 VDD) 1111b = Select internal reference voltage (15/16 VDD)23-2200bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
VDD) 1111b = Select internal reference voltage (15/16 VDD)23-22RW 00bBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW 0EN_ACMP01 is Enable comparator 020RW 0EN_ACMP11 is Enable comparator 119RW 0EN_BT1 is Enable battery monitor18RW 0EN_BD1 is Enable browned out detector17RW 0EN_TSReserved, Write '0'16RW 0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
Image: Constraint of the second sec					1110b = Select internal reference voltage (14/16	
RWOObBD[1-0]Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					VDD)	
RW 23-22OObBD[1-0]Browned out detector threshold voltage selection OOb = 1.76V O1b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					1111b = Select internal reference voltage (15/16	
23-2200bBD[1-0]00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;					VDD)	
23-2200bBD[1-0]01b = 1.7V 10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;		RW			Browned out detector threshold voltage selection	
10b = 1.65V 11b = 1.6V21RW0EN_ACMP01 is Enable comparator 020RW0EN_ACMP11 is Enable comparator 119RW0EN_BT1 is Enable battery monitor18RW0EN_BD1 is Enable browned out detector17RW0EN_TSReserved, Write '0'16RW0ACMP1_VALUE0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 1 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;				BD[1-0]		
11b = 1.6V 21 RW 0 EN_ACMP0 1 is Enable comparator 0 20 RW 0 EN_ACMP1 1 is Enable comparator 1 19 RW 0 EN_BT 1 is Enable battery monitor 18 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt;	23-22		00b			
21 RW 0 EN_ACMP0 1 is Enable comparator 0 20 RW 0 EN_ACMP1 1 is Enable comparator 1 19 RW 0 EN_BT 1 is Enable battery monitor 18 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;						
21 0 EN_ACMPO 1 is Enable comparator 0 20 RW 0 EN_ACMP1 1 is Enable comparator 0 19 RW 0 EN_BT 1 is Enable comparator 1 18 RW 0 EN_BD 1 is Enable battery monitor 17 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	BW			110 = 1.6V		
20 0 EN_ACMP1 1 is Enable comparator 1 19 RW 0 EN_BT 1 is Enable battery monitor 18 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	21	кW	0	EN_ACMP0	1 is Enable comparator 0	
19 0 EN_BI 1 is Enable battery monitor 18 RW 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	20	RW	0	EN_ACMP1	1 is Enable comparator 1	
18 0 EN_BD 1 is Enable browned out detector 17 RW 0 EN_TS Reserved, Write '0' 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	19	RW	0	EN_BT	N_BT 1 is Enable battery monitor	
17 0 EN_13 Reserved, write 0 16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	18	RW	0	EN_BD	_BD 1 is Enable browned out detector	
16 RW 0 ACMP1_VALUE 0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	17	RW	0	EN_TS Reserved, Write '0'		
1 = When ACMP1 is 0, generate interrupt; 15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	16	D\\/	0	-	,	
15 RW 0 ACMP0_VALUE 0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;	10	1.00	0	ACIVIT 1_VALUE		
1 = When ACMP0 is 0, generate interrupt;	15	RW/	0	ACMP0 VALUE		
	10		Ĭ			
14 RW 0 ACMP0 HYST 1 is Enable hysteresis of analog comparator 0	14	RW	0	ACMP0_HYST 1 is Enable hysteresis of analog comparator		
	-•					
13 RW 0 ACMP1_HYSR 1 is Enable hysteresis of analog comparator 1	13	RW	0	ACMP1_HYSR	1 is Enable hysteresis of analog comparator 1	
12-9 RW 0 AINx_EN 1 is Enable P0_7/6 and P3_1/0 as Analog input						
	12-9	RW	0	AINx EN	1 is Enable P0_7/6 and P3 1/0 as Analog input	

8	RW	0	BUCK_PMDR	REVD	
7	RW	0	BUCK_NMDR	REVD	
6	RW	0	PA_GAIN[4]	Together with PA_GAIN[0-3], PA_GAIN[0-4] means: 11111 3dBm 11110 2dBm 01110 0Bm 01101 0dBm 01100 0dBm 01010 0dBm 01001 0dBm 01001 0dBm 01001 01000 -8dBm 00101 01001 01001	
5	RW	0	XSP_CSEL	Write '1'.	
4	RW	0	SLEEP_TRIG	When it is 1, sleep counter registers of BLE can be reloaded during BLE deep sleep state.	
3-0	RW	1111b	NC[3-0]	Reserved.	

ADDITION_CTRL

R O RSVE		30
0 0		
0 0		29
0 0		28
0 0		27
0 0		26
0 0		25
0 0		24
0 0		23
0 0		22
0 0		21
0 0		20
0 0		19
0 0		18
0 0		17
0 0 <td></td> <td>16</td>		16
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1		15
0 0 0 0 0 0 0 0 0 0 0 0		14
o BUCK_BN o BUCK_LBN o HALF o TX p O p TX p TX p CALI p RF p KF		13
O BUCK_BN O HALF LO O EN RXDM O TX PLL P O TX PLL P O RX PLL P O SX PLL P		12
o both 2000 o HALF o EN o TX p P o TX p P o RX p P p P p P p P p P p P p P p P p P p P p P p P p P p P p P p P		11
O HALF LO O EN RXDA O TX PLL P O RX PLL P O RX PLL P O RE RED O REF RED O XADD C		10
0 0 0 0 0 0	OPCUR	6
0 0 0 0 0		∞
0 0 0 0	PFD DIS	7
O CALI O REF F		9
O REF O XADI		5
0	DUCE I	4
		e
RW O DIS XPD DL	ט מרא	2
RW O PA CKEN SE	N SEL	1
O DC CAL	MODE	0

Description of Word

Bit	Туре	Reset	Name	Description
31-15	R	0	RSVE	
14-12	RW	000b	BUCK_TMOS_BAK	Write '111b'
11-10	RW	00b	BUCK_BM_BAK	

UM10996

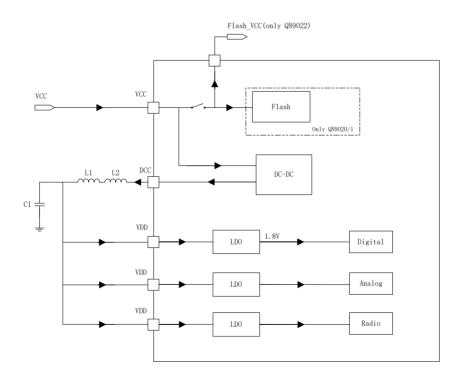
				Write '10b'	
9	RW	0	HALF_LO_OPCUR	Write '1'	
8	RW	0	EN_RXDAC	Reserved	
7	RW	0	TX_PLL_PFD_DIS	TX LO PLL open loop mode	
6	RW	0	RX_PLL_PFD_DIS	RX LO PLL open loop mode	
5	RW	0	CALI_REDUCE	Reduce current of PPF dc offset calibration	
4	RW	0	REF_REDUCE_I	Reduce REF PLL charge pump current	
3	RW	0	XADD_C	Add extra capacitor in the crystal tank 1 = Add ~5pF load cap for 16/32 MHz XTAL	
2	RW	0	DIS_XPD_DLY	Write '1'	
1	RW	0	PA_CKEN_SEL	Write '1'	
0	RW	0	DC_CAL_MODE	Write '0'	

User Manual

3. Power Supply and Power Management Unit (PMU)

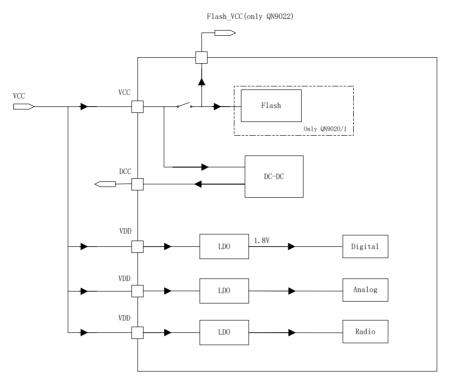
Targeting low power BLE application, QN902x supports multiple power modes and power supply modes to ensure good power performance in each power mode.

3.1 Features


The main features of the Power Supply and PMU are as below:

- Ultra low power supply voltage;
- Ultra low power consumption;
- Two power supply modes supported;
- Five power modes supported;
- Multiple wakeup sources from Deep Sleep;

3.2 Power Supply


QN902x embeds an LDO and a DC-DC converter in order to meet power requirements for different applications. In those applications where the power consumption is a critical system requirement, the DC-DC converter is implemented. In systems where the RX sensitivity is of primary concern, the DC-DC can be bypassed and the LDO mode is implement.

The figures below illustrate the detailed information of two Power Supply Modes of the QN902x.

Figure 3 DC-DC Mode

User Manual

Figure 4 LDO mode

3.3 Power Management Unit (PMU)

Power Management Unit (PMU) handles the different low energy modes in the QN902X. In most applications, the need for performance and peripheral functions varies over time. By efficiently scaling the available resources in real-time to match the demands of the application, the energy consumption can be kept at a minimum level. In the power-down mode, the PMU is responsible for detecting the wake-up trigger signals, switching on different power domains and re-startup of the MCU. The QN902x supports five power modes as defined below:

Modes	Description				
DEEP SLEEP	Clock off; MCU off; Peripherals off; Radio off. IRQ controller on and ready for an external event to wake up the MCU. Memory and register content are retained. This is the QN902x's lowest power state. This state is usually used where the application is inactive and waiting for an external trigger.				
SLEEP	 MCU off; Peripherals off; Radio off 32kHz clock on, sleep timer on and MCU wakes up after a sleep timer timeout event occurs. Memory and register content are retained. It is the second lowest power state in the QN902x. This state is usually used between BLE connection or advertising events. 				

Table 26 Power Mode

IDLE The MCU subsystem and peripherals are powered on. 16/32MHz clock running; MCU not running, however can begin code exect short order after a trigger event.	
ACTIVE (MCU) MCU running; Power consumption is dependent on MCU activity and ch speed.	
RADIO	RF radio (RX/TX) active.

Transition between different modes controlled by the power mode state machine, refer to the figure below for details.

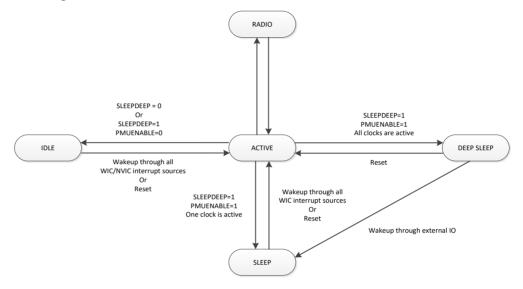


Figure 5 Power Mode State Machine

Before executing WFI or WFE instruction to enter the sleep or the deep sleep state, the DEEPSLEEP bit on the Cortex-MO system control register should be set to 1, the PMUENABLE bit of PGCR2 should also be set to 1, and the system clock should be switched to internal 20MHz.

The MCU's wakeup interrupt sources from the DEEP SLEEP state are:

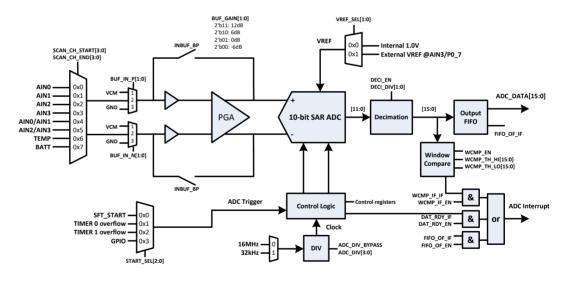
- External GPIO interrupt (GPIO0~x)
- Analog comparator (ACMP1 and ACMP2) output interrupt

In the SLEEP state, the sleep timer timeout interrupt can also wake up the MCU.

Power gating control related registers are PGCR0, PGCR1, PGCR2, which are described in section 2.5.1.

User Manual

4. Analog-to-Digital Converter (ADC)


The Analog-to-Digital Converter is a 10-bit successive approximation (SAR) ADC, with maximum sampling rate of 50 ksps and up to 4 external input channels.

4.1 Features

The main features of ADC are as follows:

- Configurable clock up to 1 MHz, with maximum sampling rate of 50 ksps.
- Supports 8/10 bits resolution.
- 4 external input channels, single-ended or differential configurable.
- Reference voltage selectable as internal or external single-ended.
- ADC conversion can be triggered by 5 sources.
- Supports single and continuous conversion mode.
- Supports single and continuous scan mode.
- Supports hardware decimation to improve the effective resolution.
- Supports window compare with interrupt.
- Supports output FIFO and DMA.

4.2 Function Description

Figure 6 shows the block diagram of the ADC

This ADC is a differential SAR ADC. The input stage includes an input multiplexer, an input buffer and a Programmable Gain Amplifier (PGA). The signal is fed into the ADC core. The ADC reference voltage can be chosen between the internal regulated 1.0 V, the VCC and the external reference at AIN3/P0_7. The ADC source clock can be a 16 MHz or a 32 kHz clock, which is then divided according to the signal acquisition requirement before being applied to the ADC.

User Manual

The output stage includes the output FIFO and the decimation block improving the effective resolution. The ADC interrupt is generated by "ADC result ready", "window compare", or output FIFO overflow exception. All have to be individually enabled.

4.2.1 ADC Input Stage

a) Input multiplexer

The ADC integrates an input multiplexer (mux) with up to 12 channels, including 4 external input channels (AIN0~3) and 2 internal channels for battery monitoring. The analog inputs AIN0~3 are shared with the GPIOs in the following way: The ADC core is a differential ADC. For single-ended usage, the analog input is connected to the positive end, while the negative end is connected to the ground or to a common-mode voltage called VCM, which is selected by a second multiplexer, right after the input multiplexer.

Input Channel	BUF_IN_P[1:0]	Positive Input Vin+	BUF_IN_N[1:0]	Negative Input Vin-
0x00	ʻb10	AIN0/P3_0	'b01 or 'b11	VCM or GND
0x01	ʻb10	AIN1/P3_1	'b01 or 'b11	VCM or GND
0x02	ʻb10	AIN2/P0_6	'b01 or 'b11	VCM or GND
0x03	ʻb10	AIN3/P0_7	'b01 or 'b11	VCM or GND
0x04	ʻb10	AIN0/P3_0	ʻb10	AIN1/P3_1
0x05	ʻb10	AIN2/P0_6	ʻb10	AIN3/P0_7
0x06	ʻb10	Reserved	Reserved	Reserved
0x07	ʻb10	BATT (battery	'b01 or 'b11	VCM or GND
		monitor)		
Others	Reserved			

The selection of GND/VCM will have impact on the accuracy. To achieve high absolute accuracy (much less than +-15mv), users need do the calibration by themselves.

The ADC input channel is selected through the register SCAN_CH_START[3:0] and SCAN_CH_END[3:0]. In non-scan mode, SCAN_CH_START is the current channel to convert, whereas in the scan mode, the ADC conversion will sweep the channel from SCAN_CH_START to SCAN_CH_END.

The battery monitor monitors the level of the battery by converting VCC/4 to digital. If in the application system the supply of the chip is regulated to a constant voltage, the VCC/4 is constant as well and can't be used for that purpose. In this case, users have to resort to an input channel to monitor the battery. An external resistor voltage divider circuit is needed to divide the supply voltage to fit into the dynamic range of the ADC.

b) Input buffer and PGA

The input stage integrates optional (can be bypassed) input buffer and a Program Gain Amplifier (PGA). The input buffer is used to increase the driving capability for the sensors with the poor driving strength. The value of the PGA gain can be chosen from -6dB, 0dB, 6dB and 12dB by changing the register BUF_GAIN[1:0].

UM10996

4.2.2 ADC Reference Voltage

The ADC reference voltage can be selected between internal regulated 1.0V, and external reference voltage at AIN3/P0_7 using VREF_SEL[1:0] register. While high

To achieve high absolute accuracy (much less then +-15mv), extra calibration is needed by the customer. About the way to calibrate ADC, please refers to document ADC application note.doc

4.2.3 ADC Clock Generation

The ADC clock is configurable through register 0x4000_00B4. The source clock can be set either to 16MHz or 32KHz clock using ADC_CLK_SEL (@0x4000_00B4[5]). Then it is fed into a clock divider whose ratio can be set by ADC_DIV[3:0] (@0x4000_00B4[3:0]).

The ADC clock speed is equal to (16M or 32k) / (2<<ADC_DIV), depending on which source clock is used. The clock divider can be bypassed by setting ADC_DIV_BYPASS (@0x4000_00B4[4]).

Note: The maximum ADC clock speed is 1MHz, which means that when the source clock is 16MHz, the minimum ADC_DIV is 0011b.

The ADC resolution can be set to 10 or 8 bits using register RES_SEL[1:0].

Clock frequency	RES_SEL[1:0]	Resolution	Clock cycles	Sample rate
1MHz	'b01	10	18	~ 55.6k
1MHz	'b10	8	16	62.5k
500KHz	'b01	10	18	~ 27.8k
500KHz	ʻb10	8	16	31.25k

In the continuous mode, the sample rate is as below:

4.2.4 ADC Trigger

The conversion can be initiated by the 5 trigger sources selected through register START_SEL[2:0].

- SFT_START: software start
- Timer 0 overflow
- Timer 1 overflow
- GPIO rising edge
- Calibration

4.2.5 Conversion Modes

a) Single mode and continuous mode

The single mode is enabled by setting SINGLE_EN to 1. In this case ADC will perform only one conversion and then stop. When SINGLE_EN=0, the ADC works in the continuous mode, and will perform successive conversion after triggered one time, and will not stop until ADC_EN is cleared. In both modes, the ADC should be enabled before first conversion by setting ADC_EN to 1.

The channel for conversion is selected by SCAN_CH_START[3:0].

b) Scan mode

The scan mode sweeps from one channel to the other and is enabled by setting SCAN_EN to 1. The start channel is controlled by SCAN_CH_START[3:0], and the end channel by SCAN_CH_END[3:0].

The scan function is available in both single and continuous mode, but please pay attention that in Scan mode, configuration for all scanned channels should be same

One limitation is that the channel index is not put into the ADC result register. When reading the ADC result, it can be difficult for the users to know which channel they are currently reading. If this information is needed users may use software to scan with the ADC working in the non-scan mode.

4.2.6 ADC Output

The ADC result is stored in the output FIFO and can be read out through the register ADC_DATA. The result is represented in 2s-complement with 16-bit width. Once the result is available, a data ready interrupt signal DAT_RDY_IF is generated. If the result in FIFO is not read out in time and overflow occurs, a FIFO overflow interrupt signal is generated.

As already stated, the ADC is a differential ADC. The positive maximum value of 2047 is reached when (Vin+ - Vin-) is equal to VREF, and the minimum value of -2048 is reached when (Vin+ - Vin-) is equal to –VREF, when it works in 10-bit mode.

a) Decimation mode

In order to increase the effective resolution of the ADC, a decimation filter based on over-sampling and averaging principle is used. The decimation rate and number of additional bits can be set using DECI_DIV[1:0] and are summarized in the table below.

DECI_EN	DECI_DIV[1:0]	Decimation Rate	Additional Effective Bits
1	00b	64	2
1	01b	256	3
1	10b	1024	4

Note:

While Scan mode is enabled, decimation should be disabled as buffer is run out by input channels.

b) Window compare

The ADC supports a window compare function. When the ADC result is higher than WCMP_TH_HI or lower than WCMP_TH_LO, an interrupt will be generated, for the system to monitor the signal.

4.2.7 ADC Power Control

To limit current consumption, the ADC power supply can be controlled independently by setting PD_SAR_ADC (@0x4000_0094[11]) to 0.

For low sampling rate applications, users need to power down the ADC intentionally after one conversion is complete, and power up the ADC again before a new conversion.

To be more efficient than the software control, a low power mode is added to power down the ADC after one complete conversion and then power up before next conversion. This can be enabled by setting POW_DN_CTRL to 1. The wait time from power up to ADC ready can be programmed by POW_UP_DLY[5:0] in cycles of the ADC clock. To use this feature the PD_SAR_ADC should be always set to 0.

4.3 Register Description

4.3.1 Register Map

The ADC register base address is 0x5001_0000.

Table 27 Register Map

Offset	Name	Description
000h	ADC0	ADC Control Register 0
004h	ADC1	ADC Control Register 1
008h	ADC2	ADC Control Register 2
00Ch	SR	ADC Status Register
010h	DATA	ADC Data Register

4.3.2 Register Description

Table 28 ADC0

1 31] 30			1 27	1 26		24		22	21	20	19	1 18	1 17	N 16	N 15	1 14	1 13	1 12	11	10	6 1	8	7	9	5	1 4] 3	1 2	
SCAN CH END[3]	SCAN CH END[2]	Ч		SCAN CH START[3]	SCAN CH START[2]		SCAN CH START[0]		RSVD	RSVD	RSVD	RSVD	SCAN INTV[1]	SCAN INTV[0]	SCAN EN	SINGLE EN	START SEL[2]	START SEL[1]	START SEL[0]		RSVD	ADC EN	SFT START	POW UP DLY[5]	POW UP DLY[4]	POW UP DLY[3]	POW UP DLY[2]	POW UP DLY[1]	POW UP DLY[0]	
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
RW	RW	RW	RW	RW	RW	RW	RW	R	R	R	R	R	RW	RW	RW	RW	RW	RW	RW	R	R	RW	RW	RW	RW	RW	RW	RW	RW	14/ C

Bit	Туре	Reset	Symbol	Description
31-28	RW	0	SCAN_CH_EN	End channel in scan mode:
			D[3-0]	0x00 = AIN0/P3_0 (single-end)
				0x01 = AIN1/P3_1 (single-end)
				0x02 = AIN2/P0_6 (single-end)
				0x03 = AIN3/P0_7 (single-end)
				0x04 = AIN0/AIN1 (differential)
				0x05 = AIN2/AIN3 (differential)
				0x06 = Reserved
				0x07 = BATT (battery monitor)
				Others: Reserved

			-	
27-24	RW	0	SCAN_CH_ST ART[3-0] RSVD	Start channel in scan mode, or current channel in non- scan mode: 0x00 = AIN0/P3_0 (single-end) 0x01 = AIN1/P3_1 (single-end) 0x02 = AIN2/P0_6 (single-end) 0x03 = AIN3/P0_7 (single-end) 0x04 = AIN0/AIN1 (differential) 0x05 = AIN2/AIN3 (differential) 0x06 = Reserved 0x07 = BATT (battery monitor) Others: Reserved Reserved.
18-17	RW	11b	SCAN_INTV[1- 0]	Interval when switching ADC source: 00b = 0 cycle 01b = 1 cycle 10b = 2 cycles 11b = 3 cycles
16	RW	0	SCAN_EN	Scan mode enable 0 = Disable 1 = Enable
15	RW	0	SINGLE_EN	Single mode enable 0 = Disable 1 = Enable
14-12	RW	0	START_SEL[2- 0]	ADC conversion trigger sources: 000b = Software Start 001b = Timer0 overflow 010 = Timer1 overflow 011b = GPIO 100b = RSVD Other = RSVD
11-10	RW	0	RSVD	Reserved.
9	RW	0	ADC_EN	ADC enable. Set it to 1 before starting conversion, and the version is stopped if cleared.
8	RW	0	SFT_START	Software start ADC conversion 0->1 trigger ADC conversion
7-2	RW	1001b	POW_UP_DLY [5-0]	Wait time from power up to stable, in clock cycles, at least 10us. If ADC is always ready, configure it to zero.
1	RW	0	POW_DN_CT RL	ADC power down control 0 = Software control of power down by PD_SAR_ADC 1= Hardware control, only working in single or single scan mode
0	RW	0	RSVD	Reserved

Table 29 ADC1

RW R	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0	DAT RDY EN WCMP EN WCMP EN FIFO OF EN TIF EN TIF SEL[2] TIF SEL[2] TIF SEL[2] TIF SEL[1] RSVD RSVD RSVD BUF SEL[0] BUF GAIN[1] BUF GAIN[1] BUF GAIN[1] BUF GAIN[1] BUF GAIN[1]
RW RW RW RW RW RW RW RW RW RW RW RW	1 0 0 1 0 1 0 0 0 0 0 0 0 0 0	BUF BM GAIN[1] BUF BM GAIN[0] BUF IN P[0] BUF IN P[0] BUF IN N[0] RES SEL[1] RES SEL[1] RES SEL[0] WCMP EN RES SEL[0] DECI DIV[1] DECI DIV[1]

Bit	Туре	Reset	Symbol	Description
31	RW	0	INT_MASK	Enable of ADC interrupt
				0 = Disable
				1 = Enable
30	RW	0	DAT_RDY_EN	Enable of ADC output data ready interrupt
				0 = Disable
				1 = Enable
29	RW	0	WCMP_EN	Enable of window compare interrupt
				0 = Disable
				1 = Enable
28	RW	0	FIFO_OF_EN	Enable of FIFO overflow interrupt
				0 = Disable
				1 = Enable
27	RW	0	TIF_EN	Test interface enable
26-24	RW	0	TIF_SEL[2-0]	Test interface select
23	RW	0	BUF_PD	Input Buffer power down
			_	0 = Power on input buffer
				1 = Power down input buffer
22	RW	0	RSVD	Reserved
21-20	RW	0	VREF_SEL[1-0]	ADC reference voltage:
				00b = Internal reference voltage
				01b = External reference voltage @AIN3/P0_7
				10b = RSVD
				11b = RSVD
19	RW	0	INBUF_BP	Bypass input buffer
				0 = Do not bypass
				1 = Bypass
18	RW	0	RSVD	Reserved
17-16	RW	01b	BUF GAIN[1:0]	PGA gain
				00b = -6dB
				01b = 0dB
				10b = 6dB
				11b = 12dB
15-14	RW	10b	BUF_BM_DRV[1	Input buffer driver bias current
			-0]	00b = 50%
			-	01b = 75%
				10b = 100%
				11b = 200%

© NXP Semiconductors N.V. 2018. All rights reserved.

-				
13-12	RW	10b	BUF_BM_GAIN[PGA bias current
			1-0]	00b = 50%
				01b = 75%
				10b = 100%
				11b = 200%
11-10	RW	01b	BUF_IN_P[1-0]	ADC buffer positive input
				00b = Not Used
				01b = VCM
				10b = Input from the selected ADC channel
				11b = Ground
9-8	RW	01b	BUF_IN_N[1-0]	ADC buffer negative input
				00b = Not Used
				01b = VCM
				10b = Input from the selected ADC channel
				11b = Ground
7-6	RW	00b	RES_SEL[1-0]	ADC resolution
				00b = RSVD
				01b = 10bit
				10b = 8bbit
				11b = RSVD
5	RW	0	WCMP_SEL	Window compare data input
			_	0 = ADC result
				1 = Decimation result
4	RW	0	WCMP_EN	Enable of window compare
			-	0 = Disable
				1 = Enable
3	RW	0	RSVD	Reserved.
2-1	RW	00b	DECI_DIV[1-0]	ADC decimation rate
				00b = 64
				01b = 256
				10 b =1024
				11b = RSVD
0	RW	0	DECI_EN	Enable of decimation
				0 = Disable
				1 = Enable
-				

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	6	5	4	ю	2	1	0
WCMP TH HI[15]	TH	Η	H	WCMP TH HI[11]	WCMP TH HI[10]	WCMP TH HI[9]	WCMP TH HI[8]	WCMP TH HI[7]	WCMP TH HI[6]	WCMP TH HI[5]	WCMP TH HI[4]	WCMP TH HI[3]	WCMP TH HI[2]	WCMP TH HI[1]	WCMP TH HI[0]	WCMP TH LO[15]	WCMP TH LO[14]	WCMP TH LO[13]	WCMP TH LO[12]	WCMP TH LO[11]	WCMP TH LO[10]	WCMP TH LO[9]	WCMP TH LO[8]	WCMP TH LO[7]	WCMP TH LO[6]	WCMP TH LO[5]	WCMP TH LO[4]	WCMP TH LO[3]	WCMP TH LO[2]	WCMP TH LO[1]	WCMP TH LO[0]
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Table 30 ADC2

Bit	Туре	Reset	Symbol	Description
31-16	RW	7FFFh	WCMP_TH_HI[15-0]	Windows compare high threshold
				If ADC result is larger than WCMP_TH_HI, one
				interrupt will be generated.
15-0	RW	8000h	WCMP_TH_LO[15-0]	Windows compare low threshold.
				If ADC result is smaller than WCMP_TH_LO, one
				interrupt will be generated.

Table 31 SR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	ю	2	1	
RSVD	FIFO OF IF	WCMP IF IF																													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW1	RW1	

Bit	Туре	Reset	Symbol	Description
31-3	RW	0	RSVD	Reserved
2	RW1	0	FIFO_OF_IF	FIFO overflow interrupt flag, write 1 to clear
1	RW1	0	WCMP_IF_IF	Window compare interrupt flag, write 1 to clear
0	R	0	DAT_RDY_IF	Data ready interrupt flag, to be cleared automatically after
				FIFO data is read.

Table 32 DATA

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	S	4	m	2	1	0
RSVD	ADC DATA[15]	ADC DATA[14]	ADC DATA[13]	ADC DATA[12]	ADC DATA[11]	ADC DATA10]	ADC DATA[9]	ADC DATA[8]	ADC DATA[7]	ADC DATA[6]	ADC DATA[5]	ADC DATA[4]	ADC DATA[3]	ADC DATA[2]	ADC DATA[1]	ADC DATA[0]															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Туре	Reset	Symbol	Description
31-16	R	0	RSVD	Reserved
15-0	R	0	ADC_DATA[15-0]	ADC data read from FIFO, in 2's-complement

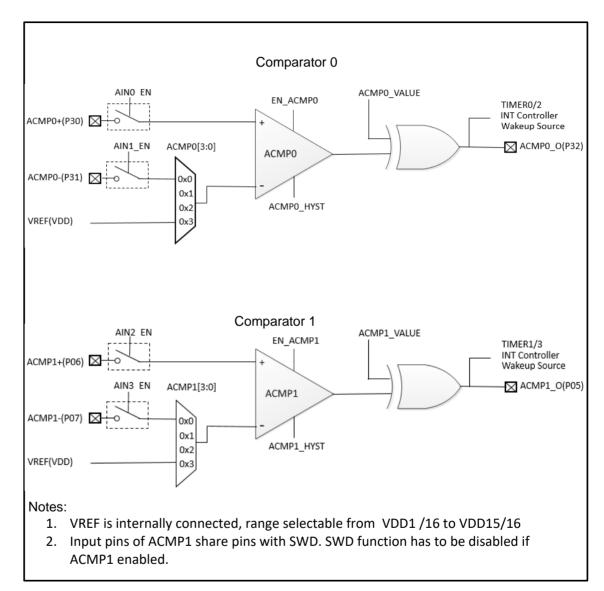
4.4 Software Document and Example Code

Refer to "QN902X API Programming Guide v1.0.pdf" and ADC example source code in the SDK.

UM10996

5. Comparator

There are two Analog Comparators integrated in QN902x, which supports many features and are easily configured to use.


5.1 Features

The main features of Analog Comparator are as follows:

- Input pins multiplexed with I/O pins
- Input pins enabled/disabled independently
- Selectable inputs on negative input pin
- Selectable internal reference voltage level
- Support hysteresis control function
- Support configurable interrupt polarity
- Output routed to multiple peripherals: Timer, INT Controller, Wakeup Source

5.2 Function Description

A block diagram of the comparator module is illustrated in figure below.

5.3 Comparator Operation

5.3.1 Comparator Inputs

Depending on the comparator operating mode, the input to the comparator negative pin may be from the input pin or an internal configurable voltage references. The input to the comparator positive pin is fixed to be from the input pin. The input pins to the comparator are multiplexed with I/O pins, must be enabled as analog input by control bit AINx_EN before using it as comparator input.

5.3.2 Comparator Outputs

The output of comparator are routed to three peripherals: Timer, Interrupt Controller, Wakeup Source Controller.

When timer working in Capture mode, the comparator output can be used to trigger the Timer capture operation. The ICSS bit of Timer TCR register is used to enable the input to Timer. Once enabled, the output of Comparator 0 is connected with Timer0 and Timer 2, while output of Comparator 1 is connected with Timer 1 and Timer 3.

5.3.3 Comparator Configuration

The comparator module provides a flexible configuration to allow the module to be tailored to the needs of an application. The QN902x Comparator module has individual control over the enable, output polarity, hysteresis and negative input selection. The negative input can be selected in a variety of voltage level when configured as using internal reference.

5.4 Register Description

The Analog Comparator Control register base address is 0x400000b8.

5.4.1 Register Description

ANALOG_CTRL

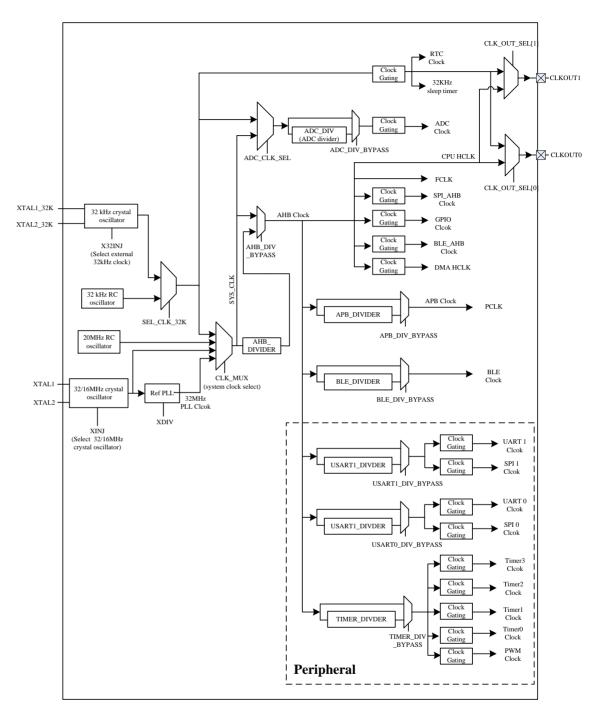
21	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	'n	2	1	(
ACMP0[3]	ACMP0[2]	ACMP0[1]	ACMP0[0]	ACMP1[3]	ACMP1[2]	ACMP1[1]	ACMP1[0]	BD[1]	BD[0]	EN ACMPO	en acmp1	EN BT		EN TS	ACMP1 VALUE	ACMP0 VALUE	ACMP1 HYST	ACMP2 HYST	AIN3 EN		AIN1 EN	AINO EN	BUCK PMDR		PA GAIN[4]	XSP CSEL	SLEEP TRIG		NC[3-0]		
0	: ∢ 0	0 V	0 V	0 A	0 V	¥ 0	0	в 0	в 0	ш 0	ш 0	0	ш 0	0	¥ 0	0	¥ 0	¥ 0	¥ 0	¥ 0	¥ 0	¥ 0	е 0	е 0	0	× 0	0	1	2 1	1	1
WA	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW							

• Description of Word

Bit	Туре	Reset	Name	Description
31-28	RW	0000Ь	ACMP0[3-0]	Comparator 0 reference voltage selection 0000b = Select external reference voltage 0001b = Select internal reference voltage (1/16 VDD) 0010b = Select internal reference voltage (2/16 VDD) 0011b = Select internal reference voltage (3/16 VDD)

r				
				0100b = Select internal reference voltage (4/16 VDD)
				0101b = Select internal reference voltage (5/16
				VDD)
				0110b = Select internal reference voltage (6/16
				VDD)
				0111b = Select internal reference voltage (7/16
				VDD)
				1000b = Select internal reference voltage (8/16 VDD)
				1001b = Select internal reference voltage (9/16
				VDD)
				1010b = Select internal reference voltage (10/16
				VDD)
				1011b = Select internal reference voltage (11/16
				VDD)
				1100b = Select internal reference voltage (12/16
				VDD) 1101b = Select internal reference voltage (13/16
				VDD)
				1110b = Select internal reference voltage (14/16
				VDD)
				1111b = Select internal reference voltage (15/16
	5147			VDD)
	RW			Comparator 1 reference voltage selection 0000b = Select external reference voltage
				0001b = Select internal reference voltage (1/16
				VDD)
				0010b = Select internal reference voltage (2/16
				VDD)
				0011b = Select internal reference voltage (3/16
				VDD)
				0100b = Select internal reference voltage (4/16 VDD)
				0101b = Select internal reference voltage (5/16
				VDD)
				0110b = Select internal reference voltage (6/16
				VDD)
27-24		0000b	ACMP1[3-0]	0111b = Select internal reference voltage (7/16
				VDD) 1000b = Select internal reference voltage (8/16
				VDD)
				1001b = Select internal reference voltage (9/16
				VDD)
				1010b = Select internal reference voltage (10/16
				VDD)
				1011b = Select internal reference voltage (11/16 VDD)
				1100b = Select internal reference voltage (12/16
				VDD)
				1101b = Select internal reference voltage (13/16
				VDD)
				1110b = Select internal reference voltage (14/16
				VDD)

				1111b = Select internal reference voltage (15/16 VDD)
23-22	RW	OOb	BD[1-0]	Browned out detector threshold voltage selection 00b = 1.76V 01b = 1.7V 10b = 1.65V 11b = 1.6V
21	RW	0	EN_ACMP0	1 is Enable comparator 0
20	RW	0	EN_ACMP1	1 is Enable comparator 1
19	RW	0	EN_BT	1 is Enable battery monitor
18	RW	0	EN_BD	1 is Enable browned out detector
17	RW	0	Reserved	Reserved
16	RW	0	ACMP1_VALUE	0 = When ACMP1 is 1, generate interrupt; 1 = When ACMP1 is 0, generate interrupt;
15	RW	0	ACMP0_VALUE	0 = When ACMP0 is 1, generate interrupt; 1 = When ACMP0 is 0, generate interrupt;
14	RW	0	ACMP0_HYST	1 is Enable hysteresis of analog comparator 0
13	RW	0	ACMP1_HYSR	1 is Enable hysteresis of analog comparator 1
12-9	RW	0	AINx_EN	1 is Enable P0_7/6 and P3_1/0 as Analog input ONLY.
8	RW	0	BUCK_PMDR	
7	RW	0	BUCK_NMDR	
6	RW	0	PA_GAIN[4]	Together with PA_GAIN[0-3], PA_GAIN[0-4] means: 11111 4dBm 01111 3dBm 11110 2dBm 01101 0dBm 01101 04Bm 01010 -2dBm 01010 -2dBm 01001 -6dBm 01000 -8dBm 00101 -10dBm 00101 -12dBm 00100 12dBm 00010 12dBm 00010
5	RW	0	XSP_CSEL	Select the load capacitor in speed up mode. All of the load cap is removed in speed up mode when XSP_SEL=1.
4	RW	0	SLEEP_TRIG	When it is 1, sleep counter registers of BLE can be reloaded during BLE deep sleep state.
3-0	RW	1111b	NC[3-0]	No connected;


6. Clock Management Unit (CMU)

The Clock Management unit (CMU) is responsible for controlling oscillators and clocks. The CMU provides the capability to selectably turn on and off the clocks to peripherals in addition to enabling/disabling and configuring of all available oscillators. The high degree of flexibility enables software to minimize the energy consumption in any specific application by not wasting power on the peripherals and the oscillators that are inactive.

6.1 Clock generation

Figure 7 shows the block diagram of the Clock unit.

QN902x User Manual of QN902x

Figure 7 Clock block diagram

6.2 Clock sources

The QN902X CMU uses following clock sources:

- · 32/16 MHz crystal oscillator.
- \cdot 20 MHz RC oscillator.

- · 32.768 KHz oscillator
 - · 32.768 KHz crystal oscillator
 - · 32 KHz RC oscillator.
- · 32 MHz PLL clock output for system

By default, the 20MHz internal RC oscillator is enabled and selected. In the deep sleep mode, all clock sources can be disabled. In the other modes, at least one clock source must be enabled.

6.3 Clock description

The system clock is selected from four clock sources by configuring the CLK_MUX register, and it generates all clocks for the chip, except the low frequency 32 kHz clock for the RTC and the sleep timer. The ADC clock can be selected among the 32 kHz clock and the system clock. The maximum system clock frequency is 32MHz. The AHB clock is derived from the system clock and supplies all the clocks in the peripherals, except the ADC, the RTC and 32 kHz sleep timer blocks. The APB clock is derived from the system for the registers.

6.4 Pin description

Table 33 shows pins that are associated with the clock block functions.

Pin name	Туре	Direc	Description
		tion	
CLOCKOUT1	Digital	0	Clockout1 pin, connected to P0_3 or P3_3 by configuring
			PIN_MUX_CTRL
CLOCKOUTO	Digital	0	Clockout0 pin, connected to P0_4 or P1_3 by configuring
			PIN_MUX_CTRL
XTAL1_32K	Analo	0	Connected to 32.768 kHz crystal. Unconnected if RCOSC used.
	g		
XTAL2_32K	Analo	I	Connected to 32.768 kHz crystal or external 32k clock. Unconnected
	g		if RC OSC used.
XTAL1	Analo	0	Connected to 16 MHz or 32 MHz crystal.
	g		
XTAL2	Analo	I	Connected to 16 MHz or 32 MHz crystal.
	g		

Table 33 Pin summary

6.5 Basic configuration

Each clock gating can disable or enable the clock independently by setting CLK_RST_SOFT_CLK or clearing CLK_RST_SOFT_SET. The user can disable peripheral by disabling the corresponding clock.

The dividers can be configured independently, therefore, all clocks can run at different frequencies.

6.5.1 System clock and AHB clock configuration

The system clock can be sourced from the internal 20 MHz oscillator, from the 32MHz

PLL, directly from the 16/32 MHz external oscillator, or from 32 kHz (32.768 kHz) oscillator

The AHB clock is derived from the system clock and serves as a clock source for CPU HCLK, FCLK, SPI_AHB, GPIO, BLE_AHB and DMA.

The CPU HCLK and FCLK are the clock sources of the core. The SPI_AHB clocks the internal flash. The BLE_AHB is used for the BLE block and does not need to be configured. All clocks, except the CPU HCLK and FCLK, can be disabled when corresponding block is not active.

6.5.2 Configure APB clock

The APB clock is derived from the AHB clock and serves as the clock source for all registers. Due to the divider, the APB clock is lower than or equal to the core clock. Because all peripheral registers are clocked by the APB clock, the APB clock should not be configured slower than the peripheral clocks.

6.5.3 Configure BLE clock

The BLE_AHB is clocked by the AHB clock, and the BLE clock is derived from the AHB clock. They are used for BLE RF block and usually do not need to be configured by the user. The BLE clock can only run at 8 or 16 MHz

Note: BLE RF block requires correct configuration of the BLE_AHB and BLE clocks. Therefore, it is recommended to use the Software Development Kit.

6.5.4 Configure peripheral clocks

The peripheral clocks are derived from the AHB clock. The dividers of all peripheral blocks clock can be configured independently, therefore, all peripheral clocks can run at different frequencies.

Every peripheral block can be disabled to reduce the power by disabling/enabling the corresponding clock independently.

6.6 Register description

The System Registers are based on 0x40000000.

6.6.1 System Clock Register Description

Table 34 System Clock Register

Offset	Name	Description
000h	CRSS	Enable clock gating and set block reset
004h	CRSC	Disable clock gating and clear block reset
008h	CMDCR	Set clock switch and clock divider
00Ch	STCR	Set systick timer STCALIB and STCLKEN

6.6.1.1 CRSS

CRSS is Enable clock gating and set block reset register, address is 0x40000000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	c,	2	1	0
GATING TIMER3	GATING TIMER2	GATING TIMER1	GATING TIMERO	GATING UART1	GATING UARTO	GATING SPI1	GATING SPIO	GATING 32K CLK	GATING SPI AHB	GATING GPIO	GATING ADC	GATING DMA	GATING BLE AHB	GATING PWM		LOCKUP RST	BLE RST	DP RST	DPREG RST	RTC RST	I2C RST	GPIO RST	WDOG RST	TIMER3 RST	TIMER2 RST	TIMER1 RST	TIMERO RST	USART1 RST	USARTO RST	DMA RST	
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1	RW1

Description of Word

Bit	Туре	Reset	Symbol	Description
31	RW1	0	GATING_TIMER3	Write 1 to disable timer 3 clock
30	RW1	0	GATING_TIMER2	Write 1 to disable timer 2 clock
29	RW1	0	GATING_TIMER1	Write 1 to disable timer 1 clock
28	RW1	1	GATING_TIMER0	Write 1 to disable timer 0 clock
27	RW1	1	GATING_UART1	Write 1 to disable UART 1 clock
26	RW1	1	GATING_UART0	Write 1 to disable UART 0 clock
25	RW1	1	GATING_SPI1	Write 1 to disable SPI 1 clock
24	RW1	1	GATING_SPI0	Write 1 to disable SPI 0 clock
23	RW1	1	GATING_32K_CLK	Write 1 to disable 32KHz clock
22	RW1	1	GATING_SPI_AHB	Write 1 to disable FLASH control clock
21	RW1	1	GATING_GPIO	Write 1 to disable GPIO clock
20	RW1	1	GATING_ADC	Write 1 to disable ADC clock
19	RW1	1	GATING_DMA	Write 1 to disable DMA clock
18	RW1	1	GATING_BLE_AHB	Write 1 to disable BLE AHB clock
17	RW1	1	GATING_PWM	Write 1 to disable PWM clock
16	RW1	0	REBOOT_SYS	Write 1 to reboot entire system
15	RW1	0	LOCKUP_RST	Write 1 to enable LOCKUP reset control
14	RW1	1	BLE_RST	Write 1 to set BLE reset
13	RW1	1	DP_RST	Write 1 to set datapath reset
12	RW1	1	DPREG_RST	Write 1 to set datapath register reset
11	RW1	1	RTC_RST	Write 1 to set sleep timer reset

10	RW1	1	I2C_RST	Write 1 to set I2C reset
9	RW1	1	GPIO_RST	Write 1 to set GPIO reset
8	RW1	1	WDOG_RST	Write 1 to set Watch Dog reset
7	RW1	1	TIMER3_RST	Write 1 to set timer 3 reset
6	RW1	1	TIMER2_RST	Write 1 to set timer 2 reset
5	RW1	1	TIMER1_RST	Write 1 to set timer 1 reset
4	RW1	1	TIMER0_RST	Write 1 to set timer 0 reset
3	RW1	1	USART1_RST	Write 1 to set USART1 (SPI 1 and UART 1) reset
2	RW1	1	USARTO_RST	Write 1 to set USARTO (SPI 0 and UART 0) reset
1	RW1	1	DMA_RST	Write 1 to set DMA reset
0	RW1	1	CPU_RST	Write 1 to set CPU reset

6.6.1.2 CRSC

CRSC is Disable clock gating and clear block reset register, the address is 0x40000004

W1	х	NGATING TIMER 3	31
W1	х	NGATING TIMER 2	30
W1	х	NGATING TIMER 1	29
W1	х	NGATING TIMER 0	28
W1	x	NGATING UART 1	27
W1	х	NGATING UART 0	26
W1	х	NGATING SPI 1	25
W1	х	NGATING SPI 0	24
W1	х	NGATING 32K CLK	23
W1	х	NGATING SPI AHB	22
W1	х	NGATING GPIO	21
W1	х	NGATING ADC	20
W1	х	NGATING DMA	19
W1	х	NGATING BLE AHB	18
W1	х	NGATING PWM	17
Я	x	RSVD	16
W1	х	DIS LCOKUP RST	15
W1	х	CLR BLE RST	14
W1	х	CLR DP RST	13
W1	х	CLR DPREG RST	12
W1	х	CLR SLPTIM RST	11
W1	х	CLR 12C RST	10
W1	x	CLR GPIO RST	6
W1	х	CLR WDOG RST	8
W1	х	CLR TIMER3 RST	7
W1	х	CLR TIMER2 RST	9
W1	х	CLR TIMER1 RST	5
W1	x	CLR TIMERO RST	4
W1	х	CLR USART1 RST	ю
W1	х	CLR USARTO RST	2
W1	x	CLR DMA RST	1
W1	x	CLR CPU RST	0

Description of Word

Bit	Туре	Reset	Symbol	Description
31	W1	х	NGATING_TIMER_3	Write 1 to enable timer 3 clock
30	W1	х	NGATING_TIMER_2	Write 1 to enable timer 2 clock
29	W1	х	NGATING_TIMER_1	Write 1 to enable timer 1 clock
28	W1	х	NGATING_TIMER_0	Write 1 to enable timer 0 clock
27	W1	х	NGATING_UART_1	Write 1 to enable UART 1 clock
26	W1	х	NGATING_UART_0	Write 1 to enable UART 0 clock
25	W1	х	NGATING_SPI_1	Write 1 to enable SPI 1 clock

24	W1	х	NGATING_SPI_0	Write 1 to enable SPI 0 clock
23	W1	х	NGATING_32K_CLK	Write 1 to enable 32KHz clock
22	W1	х	NGATING_SPI_AHB	Write 1 to enable SPI AHB clock
21	W1	х	NGATING_GPIO	Write 1 to enable GPIO clock
20	W1	х	NGATING_ADC	Write 1 to enable ADC clock
19	W1	х	NGATING_DMA	Write 1 to enable DMA clock
18	W1	х	NGATING_BLE_AHB	Write 1 to enable BLE AHB clock
17	W1	х	NGATING_PWM	Write 1 to enable PWM clock
16	R	х	RSVD	Reserved
15	W1	х	DIS_LOCKUP_RST	Write 1 to disable LOCKUP reset control
14	W1	х	CLR_BLE_RST	Write 1 to clear BLE reset
13	W1	х	CLR_DP_RST	Write 1 to clear datapath reset
12	W1	х	CLR_DPREG_RST	Write 1 to clear datapath register reset
11	W1	х	CLR_SLPTIM_RST	Write 1 to clear sleep timer reset
10	W1	х	CLR_I2C_RST	Write 1 to clear I2C reset
9	W1	х	CLR_GPIO_RST	Write 1 to clear GPIO reset
8	W1	х	CLR_WDOG_RST	Write 1 to clear Watch Dog reset
7	W1	х	CLR_TIMER3_RST	Write 1 to clear timer 3 reset
6	W1	х	CLR_TIMER2_RST	Write 1 to clear timer 2 reset
5	W1	х	CLR_TIMER1_RST	Write 1 to clear timer 1 reset
4	W1	х	CLR_TIMER0_RST	Write 1 to clear timer 0 reset
3	W1	х	CLR_USART1_RST	Write 1 to clear USART1 (SPI 1 and UART 1) reset
2	W1	х	CLR_USARTO_RST	Write 1 to clear USARTO (SPI 0 and UART 0) reset
1	W1	х	CLR_DMA_RST	Write 1 to clear DMA reset
0	W1	х	CLR_CPU_RST	Write 1 to clear CPU reset
I	1		1	

6.6.1.3 CMDCR

CMDCR is set clock switch and clock divider register, address is 0x40000008

RW	0	
RW	1	
RW	0	
RW	1	BLE FRO SEL
RW	1	BLE DIV BYPASS
RW	0	BLE DIVIDER
RW	1	AHB DIV BYPASS
RW	0	AHB DIVIDER[8]
RW	0	AHB DIVIDER[7]
RW	0	
RW	0	AHB DIVIDER[5]
RW	0	AHB DIVIDER[4]
RW	0	AHB DIVIDER[3]
RW	0	AHB DIVIDER[2]
RW	0	AHB DIVIDER[1]
RW	0	AHB DIVIDER[0]
RW	0	USART1 DIV BYPASS
RW	0	USART1 DIVIDER[2]
RW	0	USART1 DIVIDER[1]
RW	1	USART1 DIVIDER[0]
RW	1	USARTO DIV BYPASS
RW	0	USARTO DIVIDER[2]
RW	0	USARTO DIVIDER[1]
RW	0	USARTO DIVIDER[0]
RW	0	RSVD
RW	0	APB DIV BYPASS
RW	0	APB DIVIDER[1]
RW	1	APB DIVIDER[0]
RW	0	TIMER DIV BYPASS
RW	0	TIMER DIVIDER[2]
RW	0	TIMER DIVIDER[1]
RW	1	TIMER DIVIDERIO

Description of Word

Bit	Туре	Reset	Symbol	Description
31-30	RW	01b	CLK_MUX[1-0]	Select system clock source.
				00b = High frequency crystal 16MHz or
				32MHz;
				01b = 20MHz internal high frequency;
				10b = 32MHz PLL output;
				11b = 32KHz low speed clock;
29	RW	0	SEL_CLK_32K	1 = Select 32KHz clock from RCO
				0 = Select 32KHz clock from XTAL32
28	RW	1	BLE_FRQ_SEL	Describe BLE clock frequency.
				0 = 8 MHz;
				1 = 16 MHz
27	RW	1	BLE_DIV_BYPASS	'1' is bypass BLE Divider; Only 16 or 8 MHz are
				supported;
26	RW	0	BLE_DIVIDER	If BLE_DIV_BYPASS is '0',
			_	<pre>BLE_CLK = AHB_CLK / (2*(BLE_DIVIDER +1));</pre>
				Only 16 or 8 MHz are supported;
25	RW	1	AHB_DIV_BYPASS	ʻ1' is bypass AHB Divider;
24-16	RW	0	AHB DIVIDER[8-0]	If AHB_DIV_BYPASS is '0',
				AHB_CLK = SYS_CLK/(2*(APB_DIVIDER+1));
15	RW	0	USART1_DIV_BYPASS	'1' is bypass USART1 Divider;
14-12	RW	001b	USART1 DIVIDER[2-0]	If USART1_DIV_BYPASS is '0',
				USART1_CLK =
				AHB_CLK/(2*(USART1_DIVIDER+1))
11	RW	1	USARTO_DIV_BYPASS	ʻ1' is bypass USARTO Divider;
10-8	RW	0	USARTO DIVIDER[2-0]	If USARTO DIV BYPASS is '0',
				USARTO CLK =
				AHB_CLK/(2*(USART1_DIVIDER+1))
7	RW	0	RSVD	Reserved
6	RW	0	APB_DIV_BYPASS	'1' is bypass APB Divider;
5-4	RW	01b	APB_DIVIDER[1-0]	If APB_DIV_BYPASS is '0',

				APB_CLK = AHB_CLK/(2*(APB_DIVIDER+1))
3	RW	0	TIMER_DIV_BYPASS	'1' is bypass TIMER Divider;
2-0	RW	001b	TIMER_DIVIDER[2-0]	If TIMER_DIV_BYPASS is '0', TIMER_CLK = AHB_CLK / (2*(TIMER_DIVIDER + 1));

6.6.1.4 STCR

STCR is set systick timer STCALIB and STCLKEN register, address is 0x4000000C. For detailed description of the register, please refer to Table 6 STCR.

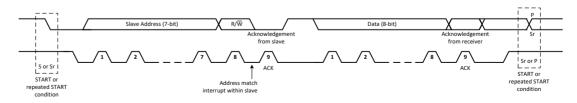
7. Inter-Integrated Circuit (I2C) interface

The I2C (inter-integrated circuit) interface is a two-wire, bi-directional serial bus that can be used to communicate with external devices using I2C protocol.

7.1 Features

- Compliance with the I2C specification v2.1
- Master or slave modes
- Configurable master baud rate
- Standard mode (up to 100 kbps)
- Fast mode (up to 400 kbps)
- 7-bit addressing mode (10-bit address not supported)
- Configurable device address in slave mode
- SCL synchronization and bus arbitration in master mode
- SCL stretching in slave mode
- Master supports SCL synchronization and bus arbitration
- 8 bit shift register

7.2 Functional Description


The I2C-bus uses only two wires

- SCL: serial clock line provided by the master device to synchronize the serial data transfer
- **SDA**: serial data/address line used to transmit and receive serial data.

When the I2C-bus is free, both the SDA and SCL lines should remain high. A High-to-Low transition of the SDA line while SCL line remains high initiates a Start condition. A Low-to-High transition of SDA line while SCL remains high initiates a Stop condition.

The data is always sent most-significant bit (MSB) first. Every byte should be immediately followed by acknowledge (ACK) bit, which is sent by the receiver after last data byte.

Each bit is sampled during the high period of the SCL. Therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL.

7.2.1 7-bit slave address

The first byte of data transferred by the master immediately after the START signal is the

7-bit slave address and the read/write bit. In the master mode, the slave address should be put into TXD to send. While in the slave mode, the slave address should be written into SLAVE_ADDR[6:0], and the bus controller will monitor incoming slave address on the SDA line to check if the address matches and this is the slave device to be addressed by the master.

7.2.2 R/nW bit

The last bit following 7-bit slave address after START condition is the R/nW bit in the first byte. The R/nW bit signal is sent by master device to set the data transfer direction. When R/nW bit is 0, the I2C bus interface is in the write mode and the data transfer direction is from master to slave. When R/nW bit is 1, the I2C bus interface is in the read mode and the data transfer direction is from the slave to the master.

7.2.3 ACK/NACK

After completing the transfer of one-byte, the receiver should send an ACK bit to the transmitter. The ACK pulse should occur during the 9th clock cycle of the SCL line. The clock pulse required to transmit the ACK bit master should be generated by the master.

The transmitter should release the SDA line when the ACK clock pulse is received. The receiver should also drive the SDA line low during the ACK clock pulse so that the SDA keeps low during the high period of the ninth SCL pulse. The receiver will not drive the SDA line low during ninth clock cycle if NACK is to be sent.

7.2.4 Data transfer

Once a successful slave addressing has been established, the data transfer can proceed on a byte-by-byte basis in the direction specified by the R/nW bit sent by the master. Each transferred byte is followed by an ACK bit on the 9th SCL clock cycle.

7.2.5 Stop or Repeated START signal

When the transfer ends, or is abnormal, the master will generate a STOP signal to abort the data transfer or generate a Repeated START signal to start a new transfer cycle.

If the master, as the receiving device, does not acknowledge the slave device, the slave device releases the SDA line for the master to generate a STOP or Repeated START signal.

7.2.6 SCL clock generation in master mode

The SCL is derived from PCLK, with a two-stage clock divider. The first one is a constant divided by 20, and the second is divided by (SCL_RATIO + 1).

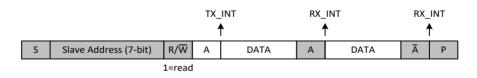
SCL = (PCLK/20)/(SCL_RATIO + 1)

7.3 Master Mode Operation

7.3.1 Master-transmit

The master initiates the data transfer with a START condition, followed by the Slave Address and R/nW bit. If R/nW is low, the data transfer occurs from the master to the slave. The ACK/NACK bit is sent by the slave. After the master receives the ACK/NACK bit,

			TX_		TX_		TX_INT ↑	
S	Slave Address (7-bit)	R/W	А	DATA (8-bit)	А	DATA (8-bit)	A/Ā	Р
		0=write	2					
	From master to slave		Ā = no	knowledge (SDA L t acknowledge (S		H)		
	From slave to master			ART condition OP condition				

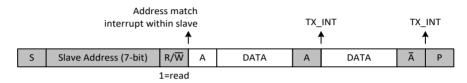

a TX_INT interrupt is generated to the processor to trigger the processing.

When the I2C controller (master mode) wants to send data to the slave, following steps take place:

- 1. Read BUSY to see if the I2C bus is free. Wait until it is free.
- 2. Set MTSR_EN=1, and SCL_RATIO to the expected clock speed.
- 3. Write formatted slave address into TXD, and R/nW(=0) bit. Then write START bit to initiate a transfer.
- 4. Wait for TX_INT interrupt, which is generated by the controller when ACK is received from slave after master sent START condition, slave address and R/nW bit.
- 5. TX_INT interrupt processing: if ACK_RECV=0, write new data into TXD, and set WR_EN. If ACK_RECV=1, stop the data transfer or re-start by setting STOP or START bit. After the register is set, clear TX_INT interrupt, and controller will clock out the waveform you have configured.
- 6. Repeat 5 and 6, if more data has to be sent.
- 7. Set STOP to send stop signal to finish the transfer.

7.3.2 Master-receive

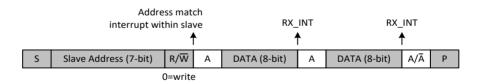
If the master wants to read data from the slave, the R/nW should be high. After the data byte is received, the master should send the ACK/NACK bit to the slave. The ACK/NACK bit should be pre-programmed to ACK_SEND. Once the ACK is sent, a RX_INT signal is generated to the processor to read the data and trigger further processing.



When the I2C controller (master mode) wants to read data from the slave, following steps take place:

- 1. Read BUSY to see if the I2C bus is free. Wait until it is free.
- 2. Set MTSR_EN=1, and SCL_RATIO to the expected clock speed.
- 3. Write formatted slave address into TXD, and R/nW(=1) bit. Then write START bit to initiate a transfer.
- 4. Wait for TX_INT interrupt, which is generated by the controller when ACK is received from the slave after the master sent START condition, slave address and R/nW bit.

- 8. TX_INT interrupt processing: if ACK_RECV=0, write RD_EN=1 to read data from the slave and write ACK_SEND for the next read. If ACK_RECV=1, stop the data transfer or re-start by configuring STOP bit or START bit. After the register is set, clear TX_INT interrupt, and controller will clock out the waveform you configured.
- 5. If more data is to be read, set ACK_SEND to 0 in TXD and then set RD_EN=1, otherwise set ACK_SEND to 1.
- 6. Set STOP to send stop signal to finish the transfer.


7.3.3 Slave-transmit

When the I2C controller (slave mode) wants to send data to the master, following steps take place:

- 1. Set SLV_EN=1, and SLAVE_ADDR[6:0].
- 2. If address match interrupt is detected and received R/nW=1, send ACK back to master by configuring the ACK_SEND bit in TXD register
- 3. Write data into TXD to send. Then clear SAM_INT to clock out the ACK and TX data.
- 4. After slave sends the 8 bit data and receives ACK/NAK from master, TX interrupt happens.
- 5. TX interrupt processing: if ACK_RECV is 0, write new data to TXD register, otherwise, do wait the line is not busy.
- 6. Repeat step 4 again and again, until ACK_RECV is 1.
- 7. Data transfer finishes when STOP condition is detected.

7.3.4 Slave-receive

When the I2C controller (slave mode) wants to receive data from the master, following steps take place:

- 1. Set SLV_EN=1, and SLAVE_ADDR[6:0].
- 2. If address match interrupt is detected and received R/nW=0, send ACK back to the master by configuring the ACK_SEND bit in TXD register
- 3. Wait for RX_INT, which indicates one byte has been received. Read the data and send ACK back by configuring the ACK_SEND bit in TXD register, if more data is to be received, otherwise, send NACK. All the transfer begins immediately after

RX_INT interrupt is cleared.

4. Data transfer finishes when STOP condition is detected.

7.4 Register Description

7.4.1 Register Map

The I2C registers base address is 0x40008000.

Table 35 I2C Register Map

Offset	Name	Description
000h	CR	Control register
004h	SR	Status register
008h	TXD	TX data register
00Ch	RXD	RX data register
010h	INT	Interrupt register

7.4.2 Register Description

Table 36 CR

Bit	Туре	Reset	Symbol	Description
31-30	R	0	RSVD	Reserved
29-24	RW	0	SCL_RATIO[5-0]	I2C master clock ratio fscl = (pclk/20)/(SCL_RATIO+1) The frequency range is pclk/20~pclk1260. The duty ratio is 2:3.
23	R	0	RSVD	Reserved
22-16	RW	0	SLAVE_ADDR[6- 0]	7-bit Slave address. In slave mode, the QN902x processor responds when the 7-bit received address matches the value in this register.
15-10	R	0	RSVD	Reserved
9	RW	0	SLV_EN	Slave mode enable 0: disable slave mode 1: enable slave mode Cannot set this bit and MSTR_EN at the same time
8	RW	0	MSTR_EN	Master mode enable O: disable master mode 1:enable master mode Cannot set this bit and SLV_EN at the same time
7-6	R	0	RSVD	Reserved
5	RW	0	STP_INT_EN	Abnormal stop interrupt enable 0: disable interrupt 1: As a slave receiver, the I2C interface generated a NACK pulse.
4	RW	0	SAM_INT_EN	Slave address match interrupt enable (only valid in slave mode) 0: No slave address was detected 1: The I2C interface detected a 7-bit address on the bus that matches the pre-programmed SLAVE_ADDR[6:0].

			I	
				General call interrupt enable (only valid in slave mode)
3	RW	0	GC_INT_EN	0: disable I2C interface response to general call as a slave.
				1: enable I2C interface to respond to general call messages.
				Arbitration lost interrupt enable (only valid in master
				mode)
2	RW	0	AL_INT_EN	0: Disable interrupt.
				1: Enables the I2C interface to interrupt the processor upon
				losing arbitration
				RX interrupt enable
	D14/	0		0: Disable interrupt.
1	RW	0	RX_INT_EN	1: Enables interrupt to the processor when the RXD has
				received a data byte
				TX interrupt enable
0	DIA			0: disable interrupt
0	RW	0	TX_INT_EN	1: Enables interrupt to the processor after transmitting a
				byte

Table 37 SR

Bit	Туре	Reset	Symbol	Description
31-2	R	0	RSVD	Reserved
1	R	0	BUSY	 I2C busy 0 = I2C bus is idle or the I2C interface is using the bus (unit busy). 1 = Set when the I2C bus is busy but the processor's I2C interface is not involved in the transaction.
0	R	1	ACK_RECE IVED	Ack received 0: The I2C interface received or sent an ACK on the bus. 1 = The I2C interface received or sent a NAK. This bit is updated after each byte and ACK/NAK information is received.

Table 38 TXD

Bit	Туре	Reset	Symbol	Description
31-21	R	0	RSVD	Reserved
20	RW	0	ACK_SEND	ACK to send as a receiver In master mode: 0: to send ACK 1: to send NACK In slave mode: (please note this is inversed to master mode) 0: to send NACK 1: to send ACK
19	W1	0	RD_EN	Read transfer enable, only valid in master mode. Write 1 to start data transfer from slave to master. Should match the R/nW bit.
18	W1	0	WR_EN	Write transfer enable, only valid in master mode. Write 1 to start data transfer from master to slave. Should match the R/nW bit.

17	W1	0	STOP	Initiates a STOP condition when in master mode. In master-receive mode, the ACK_SEND bit must be set in conjunction with the STOP bit. 0 = Do not send a STOP pulse. 1 = Send a STOP pulse to finish the transfer.
16	W1	0	START	Initiates a START condition in master mode. 0 = Do not send a START pulse. 1 = Send a START pulse to initialize a transfer.
15-8	R	0	RSVD	Reserved
7-0	RW	0	TXD	Data to send.

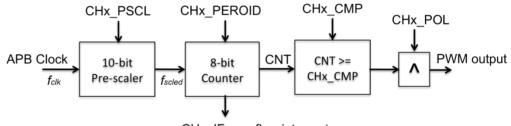
Table 39 RXD

Bit	Туре	Reset	Symbol	Description
31-8	R	0	RSVD	Reserved
7-0	R	0	RXD[7-0]	Data received

Table 40 INT

Bit	Туре	Reset	Symbol	Description
31-6	R	0	RSVD	Reserved
5	RW1	0	STP_INT	Abnormal stop interrupt, only valid in slave mode. Write 1 to clear. 1: Abnormal stop interrupt, transfer stop. 0: normal transfer
4	RW1	0	SAM_INT	Slave address match interrupt, only valid in slave mode. Write 1 to clear.
3	RW1	0	GC_INT	General call interrupt. Write 1 to clear.
2	RW1	0	AL_INT	Arbitration lost interrupt, only valid in master mode. Write 1 to clear 1: There is Arbitration lost interrupt, 0: transfer is normal
1	RW1	0	RX_INT	RX interrupt to indicate data received. Write 1 to clear.
0	RW1	0	TX_INT	TX interrupt to indicate data transmitted. Write 1 to clear

8. **PWM**


The PWM provides two independent channel PWM waveforms with programmable period and duty cycle. Each channel includes 8-bit auto-reload down counter.

8.1 Features

- Two independent PWM channels
- Each channel has 8-bit down counter and 10-bit prescaler
- Programmable period and duty cycle
- Predictable PWM initial output state
- Overflow interrupt generation
- Buffered compare and polarity register to ensure correct output

8.2 Functional Description

The block diagram of PWM is shown in Figure 8.

CHx_IF, overflow interrupt

Figure 8 PWM Block Diagram

Two independent but identical PWM channels are available with separate control registers. There are two 10-bit prescaler values that are contained in the PSCL register. The 10-bit prescaler divides the APB Clock to generate the scaled clock for the 8-bit down counter. The frequency of scaled clock is calculated as follows:

$$f_{scled} = \frac{f_{clk}}{(pscl+1)}$$

The period of the PWM waveform is determined by the PERIOD register. The down counter is automatically reloaded with (PERIOD-1) once it is down to zero. An interrupt can be generated simultaneously.

The edge of the PWM waveform is determined by the CMP register. When the counter is larger or equal to CMP, it outputs high level, otherwise, it outputs low level. The polarity can be changed by register POL. When POL is set to 1, the output will be high when the counter is smaller than CMP.

To generate dynamic PWM waveforms, the internal buffer registers are designed for CMP and POL. The buffer registers are loaded into active registers upon the counter overflow.

8.3 Register Description

8.3.1 Register Map

The PWM base address is 0x4000_E0000.

Table 41 Register Map

Offset	Name	Description
000h	CR	PWM control register
004h	PSCL	PWM prescaler register
008h	РСР	PWM period & compare register
00Ch	SR	PWM status register

8.3.2 Register Description

Table 42 CR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
RSVD	POL 1		PWM EN 1		RSVD	RSVD	RSVD	RSVD	POL 0	INT EN O	PWM EN 0																				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW	RW	RW	R	R	R	R	R	RW	RW	RW

Bit	Туре	Reset	Symbol	Description
31-11	R	0	RSVD	Reserved
10	RW	0	POL_1	PWM channel 1 waveform Polarity control: 0 = Output high when (CNT>=CMP), low when (CNT <cmp) 1 = Output low when (CNT>=CMP), high when (CNT <cmp)< td=""></cmp)<></cmp)
9	RW	0	INT_EN_1	PWM channel 1 interrupt enable: 0 = disable; 1 = enable.
8	RW	0	PWM_EN_1	PWM channel 1 enable: 0 = disable; 1 = enable.
7-3	R	0	RSVD	Reserved
2	RW	0	POL_0	PWM channel 0 waveform Polarity control: 0 = Output high when (CNT>=CMP), low when (CNT <cmp) 1 = Output low when (CNT>=CMP), high when (CNT <cmp)< td=""></cmp)<></cmp)
1	RW	0	INT_EN_0	PWM channel 0 interrupt enable: 0 = disable;

User Manual of QN902x

QN902x

				1 = enable.
0	RW	0	PWM_EN_0	PWM channel 0 enable: 0 = disable; 1 = enable.

Table 43 PSCL

Number Number 0 0 RSVD RSVD 0 0 RSVD RSVD RSVD 0 0 0 RSVD RSVD RSVD 0 0 0 RSVD RSVD RSVD RSVD 0 0 0 RSVD RSVD<	٥	0	U/\yd	10																																																																																					
No. No. C RSVD C RSVD C RSVD C RSVD C RSVD C C C C C C C CH1 PSCUB		0	u//38																																																																																						
C RSVD C RSVD C RSVD C RSVD C RSVD C CH1 PSCU3	< a	0	UV28	20																																																																																					
No. No. C C RSVD RSVD C CH1 PSCUB1 RSVD RSVD C CH1 PSCUB1 C CH1 PSCUB1 C C CH1 PSCUB1 C C C C C C CH1 PSCUB1 C C C C C C CH1 PSCUB1 C		0	u//3a	00																																																																																					
Number Number 0 0 RSVD RSVD 0 0 CH1 PSCU[9] CH1 PSCU[1] CH1 PSCU[1] 0 0 CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] 0 0 CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] 0 0 CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] 0 0 CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] 0 0 CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] CH1 PSCU[1] 0 0 CH1 PSCU[1]	< 0	0		77																																																																																					
0 CH1 PSCU[9] 0 CH1 PSCU[8] 0 CH1 PSCU[6] 0 RSVD	: ~	0	RSVD	26																																																																																					
0 CH CH SCUIN 1 C CH SSUIN 1 C SUNN SUNN 1 C SUNN SUNN 1 C SUNN SUNN 1 C SUNN SUNN 1 <td< th=""><th>R</th><th>0</th><th>PS</th><th>25</th></td<>	R	0	PS	25																																																																																					
0 CH1 PSCU[7] 1 0 1 <td< td=""><td>RW</td><td>0</td><td></td><td>24</td></td<>	RW	0		24																																																																																					
0 CH CH P 1 0 CH PSCUIG 1 0 RSVD P 1 0	RW	0		23																																																																																					
0 CH1 PSCU[5] 1 0 1 <td< td=""><td>RW</td><td>0</td><td></td><td>22</td></td<>	RW	0		22																																																																																					
0 CH1 PSCU[4] 0 0 0 CH1 PSCU[4] 0 0 0 0 0 CH1 PSCU[2] 0 CH2 PSCU[2] <td>RW</td> <td>0</td> <td></td> <td>21</td>	RW	0		21																																																																																					
0 CH1 PSCU[3] 0 0 CH1 PSCU[3] 1 0 RSVD 1	RW	0		20																																																																																					
0 CH1 PSCU[2] 0 0 0 CH1 PSCU[2] 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 CH0 PSCU[3] 0 CH0 PSCU[4]	RW	0		19																																																																																					
0 CH1 PSCU11 0 CH1 PSCU10 1 RSVD 0 RSVD 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 3 C 4 C 4 C 5 <td>RW</td> <td>0</td> <td></td> <td>18</td>	RW	0		18																																																																																					
0 CH1 PSCLIOI 1 0 RSVD 1 0 RSVD <tr td=""> RSVD <td< td=""><td>RW</td><td>0</td><td></td><td>17</td></td<></tr> <tr><td>0 RSVD 0 RSVD 1 RSVD</td><td>RW</td><td>0</td><td></td><td>16</td></tr> <tr><td>o RSVD P RSVD</td><td>R</td><td>0</td><td>RSVD</td><td>15</td></tr> <tr><td>0 RSVD 0 RSVD 1 RSVD</td><td>R</td><td>0</td><td>RSVD</td><td>14</td></tr> <tr><td>0 RSVD 0 RSVD 1 0 0 0 1 0 0 0 1 0 <tr td=""> <tr td=""> 0</tr></tr></td><td>R</td><td>0</td><td>RSVD</td><td>13</td></tr> <tr><td>o RSVD C RSVD C C I C</td><td>R</td><td>0</td><td>RSVD</td><td>12</td></tr> <tr><td>o RSVD 7 CHO PSCL[9] 8 CHO PSCL[9] 9 CHO PSCL[9] 9 CHO PSCL[9] 9 CHO PSCL[8] 9 CHO PSCL[8] 9 CHO PSCL[8] 9 CHO PSCL[6] 9 CHO PSCL[6] 9 CHO PSCL[6] 10 CHO PSCL[6] 11 CHO PSCL[6]</td><td>Я</td><td>0</td><td>RSVD</td><td>11</td></tr> <tr><td>0 CH0 PSCL[9] 0 CH0 PSCL[8] 1 O 1 O 1 CH0 PSCL[8] 1 CH0 PSCL[8]</td><td>R</td><td>0</td><td>RSVD</td><td>10</td></tr> <tr><td>0 CH0 PSCL[8] 0 CH0 PSCL[7] 0 CH0 PSCL[6] 0 CH0 PSCL[7] 0 CH0 PSCL[7] 0 CH0 PSCL[7] 0 CH0 PSCL[7]</td><td>RW</td><td>0</td><td></td><td>6</td></tr> <tr><td>0 CH0 PSCL[7] 0 CH0 PSCL[6] 0 CH0 PSCL[6]</td><td>RW</td><td>0</td><td></td><td>8</td></tr> <tr><td>0 CH0 PSCL[6] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2]</td><td>RW</td><td>0</td><td>CH0 PSCL[7]</td><td>7</td></tr> <tr><td>0 CH0 PSCL[5] 0 CH0 PSCL[4] 0 CH0 PSCL[4]</td><td>RW</td><td>0</td><td>CH0 PSCL[6]</td><td>9</td></tr> <tr><td>0 CH0 PSCL[4] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[1]</td><td>RW</td><td>0</td><td></td><td>5</td></tr> <tr><td>0 CH0 PSCL[3] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2]</td><td>RW</td><td>0</td><td>CH0 PSCL[4]</td><td>4</td></tr> <tr><td>o CH0 PSCU21 o CH0 PSCU11 o CH0 PSCU11</td><td>RW</td><td>0</td><td></td><td>з</td></tr> <tr><td>CH0 PSCL[1]</td><td>RW</td><td>0</td><td></td><td>2</td></tr> <tr><td>CH0 PSCL[0]</td><td>RW</td><td>0</td><td></td><td>1</td></tr> <tr><td></td><td>RW</td><td>0</td><td>CH0 PSCL[0]</td><td>0</td></tr>	RW	0		17	0 RSVD 0 RSVD 1 RSVD	RW	0		16	o RSVD P RSVD	R	0	RSVD	15	0 RSVD 0 RSVD 1 RSVD	R	0	RSVD	14	0 RSVD 0 RSVD 1 0 0 0 1 0 0 0 1 0 <tr td=""> <tr td=""> 0</tr></tr>	R	0	RSVD	13	o RSVD C RSVD C C I C	R	0	RSVD	12	o RSVD 7 CHO PSCL[9] 8 CHO PSCL[9] 9 CHO PSCL[9] 9 CHO PSCL[9] 9 CHO PSCL[8] 9 CHO PSCL[8] 9 CHO PSCL[8] 9 CHO PSCL[6] 9 CHO PSCL[6] 9 CHO PSCL[6] 10 CHO PSCL[6] 11 CHO PSCL[6]	Я	0	RSVD	11	0 CH0 PSCL[9] 0 CH0 PSCL[8] 1 O 1 O 1 CH0 PSCL[8] 1 CH0 PSCL[8]	R	0	RSVD	10	0 CH0 PSCL[8] 0 CH0 PSCL[7] 0 CH0 PSCL[6] 0 CH0 PSCL[7] 0 CH0 PSCL[7] 0 CH0 PSCL[7] 0 CH0 PSCL[7]	RW	0		6	0 CH0 PSCL[7] 0 CH0 PSCL[6] 0 CH0 PSCL[6]	RW	0		8	0 CH0 PSCL[6] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2]	RW	0	CH0 PSCL[7]	7	0 CH0 PSCL[5] 0 CH0 PSCL[4] 0 CH0 PSCL[4]	RW	0	CH0 PSCL[6]	9	0 CH0 PSCL[4] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[1]	RW	0		5	0 CH0 PSCL[3] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2]	RW	0	CH0 PSCL[4]	4	o CH0 PSCU21 o CH0 PSCU11 o CH0 PSCU11	RW	0		з	CH0 PSCL[1]	RW	0		2	CH0 PSCL[0]	RW	0		1		RW	0	CH0 PSCL[0]	0
RW	0		17																																																																																						
0 RSVD 0 RSVD 1 RSVD	RW	0		16																																																																																					
o RSVD P RSVD	R	0	RSVD	15																																																																																					
0 RSVD 0 RSVD 1 RSVD	R	0	RSVD	14																																																																																					
0 RSVD 0 RSVD 1 0 0 0 1 0 0 0 1 0 <tr td=""> <tr td=""> 0</tr></tr>	R	0	RSVD	13																																																																																					
o RSVD C RSVD C C I C	R	0	RSVD	12																																																																																					
o RSVD 7 CHO PSCL[9] 8 CHO PSCL[9] 9 CHO PSCL[9] 9 CHO PSCL[9] 9 CHO PSCL[8] 9 CHO PSCL[8] 9 CHO PSCL[8] 9 CHO PSCL[6] 9 CHO PSCL[6] 9 CHO PSCL[6] 10 CHO PSCL[6] 11 CHO PSCL[6]	Я	0	RSVD	11																																																																																					
0 CH0 PSCL[9] 0 CH0 PSCL[8] 1 O 1 O 1 CH0 PSCL[8]	R	0	RSVD	10																																																																																					
0 CH0 PSCL[8] 0 CH0 PSCL[7] 0 CH0 PSCL[6] 0 CH0 PSCL[7] 0 CH0 PSCL[7] 0 CH0 PSCL[7] 0 CH0 PSCL[7]	RW	0		6																																																																																					
0 CH0 PSCL[7] 0 CH0 PSCL[6]	RW	0		8																																																																																					
0 CH0 PSCL[6] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[5] 0 CH0 PSCL[2]	RW	0	CH0 PSCL[7]	7																																																																																					
0 CH0 PSCL[5] 0 CH0 PSCL[4]	RW	0	CH0 PSCL[6]	9																																																																																					
0 CH0 PSCL[4] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[3] 0 CH0 PSCL[1]	RW	0		5																																																																																					
0 CH0 PSCL[3] 0 CH0 PSCL[2] 0 CH0 PSCL[2] 0 CH0 PSCL[2]	RW	0	CH0 PSCL[4]	4																																																																																					
o CH0 PSCU21 o CH0 PSCU11 o CH0 PSCU11	RW	0		з																																																																																					
CH0 PSCL[1]	RW	0		2																																																																																					
CH0 PSCL[0]	RW	0		1																																																																																					
	RW	0	CH0 PSCL[0]	0																																																																																					

Bit	Туре	Reset	Symbol	Description
31-26	R	0	RSVD	Reserved
25-16	RW	0	CH1_PSCL[9-0]	PWM channel 1 prescaler. Output frequency = fclk/(CH1_PSCL + 1)
15-10	R	0	RSVD	Reserved
9-0	RW	0	CH0_PSCL[9-0]	PWM channel 0 prescaler. Output frequency = fclk/(CH0_PSCL + 1)

Table 44 PCP

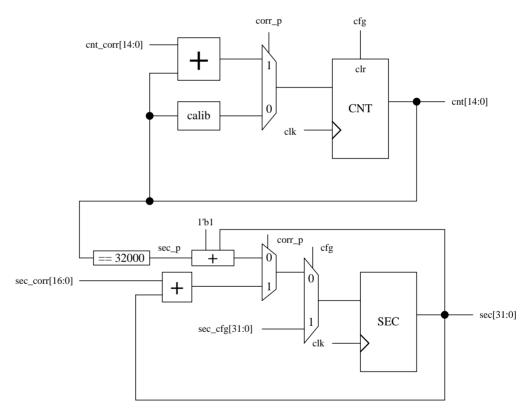
Bit	Туре	Reset	Symbol	Description
31-24	RW	FFh	CH1_CMP[7-0]	PWM channel 1 compare register.
23-16	RW	FFh	CH1_PERIOD[7-0]	PWM channel 1 period register.
15-8	RW	FFh	CH0_CMP[7-0]	PWM channel 0 compare register.
7-0	RW	FFh	CH0_PERIOD[7-0]	PWM channel 0 period register.

Table 45 SR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	'n	2	1	0
RSVD	CH1 IF	RSVD	CH0 IF																												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW1	R	R	R	R	R	R	R	RW1

Bit	Туре	Reset	Symbol	Description	
31-9	R	0	RSVD	Reserved	
8	RW1	0	CH1_IF	PWM channel 1 interrupt flag:0 = no interrupt occurring;1 = an interrupt pending. Write 1 to clear the interrupt.	
7-1	R	0	RSVD	RSVD Reserved	
0	RW1	0	PWM channel 0 interrupt flag: CH0_IF 0 = no interrupt occurring; 1 = an interrupt pending. Write 1 to clear the interrupt.		

9. Real Time Clock (RTC)


The Real Time Clock (RTC) provides real time with calibration, and uses 32 kHz clock with very low power consumption.

9.1 Features

- 15-bit counter to generate second with calibration function
- Operates on external/internal 32kHz clock
- Configures second on the fly
- Second and capture interrupt generation
- Input capture function with programmable noise cancellation
- Positive or negative edge input capture
- Asynchronous register access

9.2 Functional Description

The block diagram of the RTC is shown in Figure 9.

Figure 9 RTC Block Diagram

The RTC is composed of two counters. The first one is the 15-bit 1-second counter, which runs at 32 kHz clock and wraps to 0 once it reaches 32000 corresponding to the 1-second interval. The second one is the 32-bit counter, which is triggered by the first counter and can last for years with 1LSB representing one second.

9.2.1 Clock Accuracy Compensation

The accuracy of the time provided by the RTC depends on the clock accuracy and can be improved by setting the right ppm of the clock (PPM_VAL). This function is enabled by CAL_EN. If the ppm value is positive, the CAL_DIR should be set to 0, otherwise to 1.

9.2.2 Timing Compensation

When the chip enters the sleep mode, the RTC goes also into the sleep mode and the counters stop. The contents of the counters are retained. The user may compensate for the elapsed time to get the right time into the counters, if he knows how long it has slept.

The RTC provides two registers for the user to write in the elapsed time, CNT_CORR[14:0] and SEC_CORR[17:0]. The first one is used to compensate for the 1-s counter, and second one for the 32-bit counter. This feature is enabled by CORR_EN.

9.2.3 Input Capture Unit

The function of the input capture is to monitor the active edge of an input signal. The active edge can be positive or negative. This can be set by CAP_EDGE_SEL. Setting CAP_EN to 1 enables the monitoring, even though this monitoring has nothing to do with the counter. If users need to measure the interval between two rising edges, the users need to record the counter values in the interrupt service routine and then get the interval by subtracting the previous counter value from the current one.

9.2.4 Programming Guide

The registers of the RTC are in the APB clock domain, while the counters are clocked by the 32k clock. This asynchronous interface may lead to the crash of the register read/write function. To make a reliable register read/write operation, a data synchronization scheme is implemented.

The synchronization is started when the register bit CFG is set. During the synchronization, a corresponding busy flag in the SYNCBUSY register is set, and is cleared automatically upon completion. The best practice is

- Check the busy flag, if 1, wait for it to be cleared.
- If the busy flag is cleared, write the registers (whose contents will be stored in the APB clock domain)
- Set CFG to start synchronization from APB clock domain to 32k clock domain

The RTC will synchronize registers to be read from 32k clock domain to the APB clock domain automatically. Before read, users should check the status bit and read register when the synchronization is done.

9.2.5 Interrupts

The RTC may generate two interrupts if enabled. The first interrupt indicates one second. The other one represents the input capture interrupt. The status of the

interrupts can be read by RTC_STATUS, and can be cleared by writing 1 to the corresponding bit.

9.3 Register Description

9.3.1 Register Map

The RTC register base address is 0x4000_6000.

Table 46 Timer Register Map

Offset	Name	Description
000h	CR	RTC control register
004h	SR	RTC status register
008h	SEC	RTC second register
00Ch	CORR	RTC correction register
010h	CALIB	RTC calibration register
014h	CNT	RTC counter current value register

9.3.2 Register Description

Table 47 CR

0	0	DC/U	21
: ~	0	BSVD	30
R	0	RSVD	29
R	0	RSVD	28
R	0	RSVD	27
R	0	RSVD	26
R	0	RSVD	25
R	0	RSVD	24
R	0	RSVD	23
R	0	RSVD	22
Я	0	RSVD	21
R	0	RSVD	20
R	0	RSVD	19
R	0	RSVD	18
R	0	RSVD	17
R	0	RSVD	16
R	0	RSVD	15
R	0	RSVD	14
R	0	RSVD	13
ж	0	RSVD	12
ж	0	RSVD	11
R	0	RSVD	10
Я	0	RSVD	9
RW	0	CAL EN	8
R	0	RSVD	7
RW	0	CAP EDGE SEL	6
RW	0	CAP IE	5
RW	0	CAP EN	4
R	0	RSVD	3
W1	0	CFG	2
RW	0	CORR EN	1
D1//	0	SEC IE	C

Bit	Туре	Reset	Symbol	Description
31-9	R	0	RSVD	Reserved
8	RW	0	CAL_EN	Calibration of 32k clock accuracy enable. Refer PPM_VAL. 0 = disable 1 = enable
7	R	0	RSVD	Reserved
6	RW	0	CAP_EDGE_SEL	Input capture active edge selection: 0 = positive edge 1 = negative edge
5	RW	0	CAP_IE	Input capture interrupt enable: 0 = disable 1 = enable
4	RW	0	CAP_EN	Input capture enable 0 = disable

				1 = enable
3	R	0	RSVD	Reserved
2	W1	0	CFG	 RTC second configuration control. The synchronization only starts 0 = no effect 1 = configure This bit is auto cleared after synchronization.
1	RW	0	CORR_EN	RTC correction enable: 0 = disable; 1 = enable.
0	RW	0	SEC_IE	RTC second interrupt enable: 0 = disable; 1 = enable.

Table 48 SR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
RSVD	CALIB SYNC BUSY	CORR SYNC BUSY		SR SYNC BUSY	CR SYNC BUSY	RSVD	RSVD	RSVD	CAP IF	RSVD	RSVD	RSVD	SEC IF																		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	Я	R	R	R	R	R	Я	R	R	Я	R	R	R	Я	Я	R	R	R	Я	R	R	RW1	R	R	Я	RW1

Bit	Туре	Reset	Symbol	Description
31-13	R	0	RSVD	reserved
12	R	0	CALIB_SYNC_BUSY	Calibration Register synchronization busy indicator 0 = Synchronization done; 1 = Synchronization ongoing Read only and self-clear.
11	R	0	CORR_SYNC_BUSY	Correct configuration Register synchronization busy indicator 0 = Synchronization done; 1 = Synchronization ongoing Read only and self-clear.
10	R	0	SEC_SYNC_BUSY	Second configuration Register synchronization busy indicator 0 = Synchronization done; 1 = Synchronization ongoing Read only and self-clear.
9	R	0	SR_SYNC_BUSY	Status Register synchronization busy indicator 0 = Synchronization done; 1 = Synchronization ongoing Read only and self-clear.
8	R	0	CR_SYNC_BUSY	Control Register synchronization busy indicator 0 = Synchronization done;

				1 = Synchronization ongoing Read only and self-clear.
7-5	R	0	RSVD	Reserved
4	RW1	0	CAP_IF	Input capture interrupt flag: 0 = no interrupt occurring; 1 = an interrupt pending. Write 1 to clear the interrupt.
3-1	R	0	RSVD	Reserved
0	RW1	0	SEC_IF	Second interrupt flag: 0 = no interrupt occurring; 1 = an interrupt pending. Write 1 to clear the interrupt.

Table 49 SEC

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
SEC VAL[31]	SEC VAL[30]	SEC VAL[29]	SEC VAL[28]	SEC VAL[27]	SEC VAL[26]	SEC VAL[25]	SEC VAL[24]	SEC VAL[23]	SEC VAL[22]	SEC VAL[21]	SEC VAL[20]	SEC VAL[19]	SEC VAL[18]	SEC VAL[17]	SEC VAL[16]	SEC VAL[15]	SEC VAL[14]	SEC VAL[13]	SEC VAL[12]	SEC VAL[11]	SEC VAL[10]	SEC VAL[9]	SEC VAL[8]	SEC VAL[7]	SEC VAL[6]	SEC VAL[5]	SEC VAL[4]	SEC VAL[3]	SEC VAL[2]	SEC VAL[1]	SEC VAL[0]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH																					

Bit	Туре	Reset	Symbol	Description
31-0	RWH	0	SEC_VAL[31-0]	Second configuration register. Write to set second value; read for the current value of second counter.

Table 50 COEE

	0		
		SEC CORR[15]	30
	0		29
	0	SEC CORR[13]	28
-	0	SEC CORR[12]	27
	0	SEC CORR[11]	26
RW	0	SEC CORR[10]	25
RW	0	SEC CORR[9]	24
RW	0	SEC CORR[8]	23
RW	0	SEC CORR[7]	22
-	0		21
RW	0	SEC CORR[5]	20
RW	0	SEC CORR[4]	19
RW	0	SEC CORR[3]	18
RW	0	SEC CORR[2]	17
RW	0	SEC CORR[1]	16
RW	0	SEC CORRÍO	15
-	0	CNT CORR[14]	14
RW	0	CNT CORR[13]	13
RW	0	CNT CORR[12]	12
RW	0	CNT CORR[11]	11
RW	0	CNT CORR[10]	10
RW	0	CNT CORR[9]	6
RW	0	CNT CORR[8]	8
RW	0	CNT CORR[7]	7
RW	0	CNT CORR[6]	9
RW	0	CNT CORR[5]	5
RW	0	CNT CORR[4]	4
RW	0	CNT CORR[3]	e
RW	0	CNT CORR[2]	2
RW	0	CNT CORR[1]	1
RW	0	CNT CORR[0]	0

Bit	Туре	Reset	Symbol	Description
31-15	RW	0	SEC_CORR[16-0]	Second correction register.
14-0	RW	0	CNT_CORR[14-0]	RTC counter correction register.

Table 51 CALIB

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	c	2	1	0
RSVD	CAL DIR	PPM VAL[15]	PPM VAL[14]	PPM VAL[13]	PPM VAL[12]			PPM VAL[9]	PPM VAL[8]		PPM VAL[6]	PPM VAL[5]	PPM VAL[4]	PPM VAL[3]	PPM VAL[2]	PPM VAL[1]	PPM VAL[0]														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	Я	R	R	Я	R	R	R	Я	R	R	R	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Bit	Туре	Reset	Symbol	Description
31-17	R	0	RSVD	Reserved
16	RW	0	CAL_DIR	RTC calibration direction indicator: 0 = forward calibrate; 1 = backward calibrate.
15-0	RW	0	PPM_VAL[15-0]	RTC calibration ppm value, the precision is 1 ppm.

Table 52 CNT

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	n	2	1	0
RSVD	CNT VAL[14]	CNT VAL[13]	CNT VAL[12]			CNT VAL [9]	CNT VAL [8]	CNT VAL [7]	CNT VAL [6]	CNT VAL [5]	CNT VAL [4]	CNT VAL [3]	CNT VAL [2]	CNT VAL [1]	CNT VAL [0]																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	Я	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	Я

Bit	Туре	Reset	Symbol	Description
31-15	R	0	RSVD	Reserved
14-0	R	0	CNT_VAL[14-0]	RTC counter current value, read only.

10. Serial Peripheral Interface (SPI0/SPI1)

The serial peripheral interface (SPI) can be used to communicate with external devices using the SPI protocol supporting half-duplex, full-duplex and simplex synchronous serial communication. The interface can be configured as master or slave device, in 4-wire (full-duplex) or 3-wire (half-duplex) modes, and supports multiple slaves on a single SPI bus.

10.1 Features

- Supports master or slave mode
- Supports 4-wire (full-duplex) or 3-wire (half-duplex) modes
- Clock speed up to 16MHz in master mode for 32MHz system clock
- Clock speed up to 32/6MHz in slave mode for 32MHz system clock
- Programmable clock polarity and phase
- Slave select controlled by hardware or software in master mode
- Programmable bit order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag

10.2 Functional Description

The SPI allows synchronous, serial communication between the MCU and external devices. The application software can manage the communication by polling the status flag or using dedicated SPI interrupt.

Four I/O pins may be used for communication.

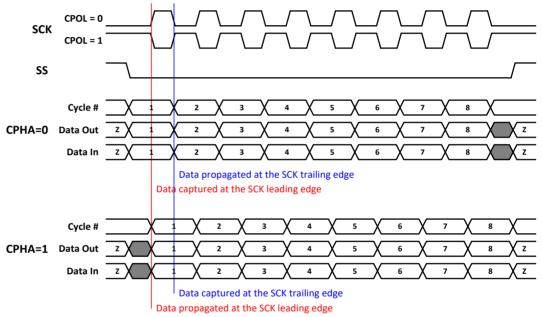
- DAT: data-out in 4-wire mode and data in/out in 3-wire mode
- DIN: data-in in 4-wire mode; Not used in 3-wire mode
- SCK: serial clock output for SPI master and input for SPI slave.
- **nCS0/1**: Slave select pin; Output for master and input for slave; Only nCS0 is available for slave mode.

The SPI interface is shared with the GPIO pins. The SPIx_PIN_SEL(PIN_MUX_CTRL[0:1]) is used to select the GPIO pins for SPI. The nCS0 and nCS1 are selected by MSTR_SSx(CR0[14:15]).

10.2.1 Master Mode Operation

The SPI interface is programmed as a master device by setting SPI_MODE to 0. Once it is enabled, it monitors the TX buffer (TXD) continuously. If it is not empty, the data in TX buffer is moved to the transmit shift register, which shifts the data out serially on the DAT line while providing the serial clock. If the TX buffer is not full, the TX_FIFO_NFUL_IF flag is set to 1, to indicate that more data can be written into the buffer.

While the SPI master transfers data to a slave on the DAT line, the selected SPI slave device simultaneously transfers the data in its shift register to the master on the DIN line in a 4-wire operation. The data byte received from the slave is moved into the master's RX buffer, where it can be read from the RXD.


The SPI master can connect to two slave devices, and select one slave device to communicate by setting MSTR_SSx(CR0[14:15]). Only one slave device should be selected at a time.

10.2.2 Slave Mode Operation

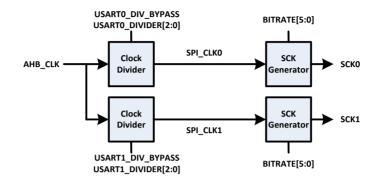
The SPI interface is programmed as a slave device by setting SPI_MODE to 1. If the slave is selected by a master device via nCS, the data are shifted in through the DIN pin and out through the DAT pin, clocked by the SCK signal from the master device. The slave device cannot initiate the data transfer. Data to be transferred to the master device is pre-loaded into the TX buffer by writing to TXD.

10.2.3 Timing

SPI master support 4 modes, the timing diagram is the same for master and slave as follows.

The CPOL defines the logic level when the SPI is idle, while the CPHA defines the active edge of the SCK to capture the input data.

The SS signal is active low and asserted when the data transfer is initiated by the master device. It is de-asserted when no more data is in the Tx buffer of master and that last bit in the shift register is sent out.


10.2.4 Clock generation

The SPI clock is derived by diving the AHB clock as follows:

- USARTx_DIV_BYPASS=1, SPI_CLK=AHB_CLK
- USARTx_DIV_BYPASS=0, SPI_CLK=AHB_CLK/(2*(USARTx_DIVIDER[2:0]+1))

In the master mode, the SCK is generated from the SPI_CLK as shown below: SCK=SPI_CLK/(2*(BITRATE[5:0]+1))

The SPI_CLK is also needed by the slave device to operate. The speed should be at least 6 times faster than the SCK frequency of the master device to ensure a reliable transmission.

10.2.5 TX/RX Buffer

Both TX and RX buffer are 32-bit, which can be configured as one 32-bit word buffer, or 4x8-bit FIFO.

10.2.6 Interrupt

When the SPI interrupt is enabled, the following 2 flags will generate an interrupt request:

1. RX buffer not empty interrupt: RX_FIFO_NEPT_IF flag is set to logic 1 if the received data is moved into RX buffer. The flag is cleared automatically once the RXD is read and the RX buffer is empty.

2. TX buffer not full interrupt: TX_FIFO_NFUL_IF is set to logic 1 if all data in TX buffer have been transmitted and the TX buffer can be written again.

10.3 Register Description

10.3.1 Register Map

The SPIO and SPI1 have the same register map, but different base addresses. The base address of SPIO is 0x40007800. The base address of SPI1 is 0x4000A800.

Table 53 SPI0/SPI1 Register Map

Offset	Name	Description
000h	CR0	Control register 0
004h	CR1	Control register 1
008h	RSVD	Reserved
00Ch	RSVD	Reserved
010h	TXD	TX data register
014h	RXD	RX data register
018h	SR	Status register

10.3.2 Register Description

Table 54 CR0

Bit	Туре	Reset	Symbol	Description						
31-22	R	0	RSVD	Reserved						
21-16	RW	0	BITRATE	Baud rate register, only valid in master mode. SCK frequency: sck = spi_clk / (2*(BITRATE + 1))						
15	RW	0	MSTR_SS1	SS1 select, only valid In master mode 0: de-select 1: select SS1 slave device						
14	RW	0	MSTR_SS0	SSO select, only valid In master mode 0: de-select 1: select SSO slave device						
13-12	R	0	RSVD							
11	RW	0	SPI_IE	SPI general interrupt enable O: disable 1: enable						
10	R	0	RSVD	Reserved						
9	RW	0	RX_FIFO_NEMT_IE	RX buffer not empty interrupt enable 0: disable 1: enable						
8	RW	0	TX_FIFO_NFUL_IE	TX buffer not full interrupt enable 0: disable 1: enable						
7	RW	0	DATA_IO_MODE	Data IO mode: 0: 4 wire mode 1: 3 wire mode						
6	RW	0	BYTE_ENDIAN	Byte endian, valid only when buffer width is 32: 0: little endian. Send the lower byte first 1: big endian. Send the higher byte first						
5	RW	0	BUF_WIDTH	RX/TX buffer width 0: 8 bit 1: 32 bit						
4	RW	0	BIT_ORDER	Bit order of byte transfer 1: MSB first 0: LSB first						
3	R	0	RSVD	Reserved						
2	RW	0	SPI_MODE	SPI mode: 0: master mode 1: slave mode						
1	RW	0	СРНА	Data sampling edge of SCK 0 : leading edge (first edge) 1 : trailing edge (second edge)						
0	RW	0	CPOL	Logic level of SCK in idle state 0: low 1: high						

Table 55 CR1

Bit	Reset		Symbol	Description
-----	-------	--	--------	-------------

31-18	R	0	RSVD	Reserved						
17	W1	0	RX_FF_CLR	Write 1 to clear RX buffer. Not valid to write 0.						
16	W1	0	TX_FF_CLR	Write 1 to clear TX buffer. Not valid to write 0.						
15-10	R	0	RSVD	Reserved						
9	RW	0	S_SDIO_EN	SPI slave data output enable, used only in 3-wire mode, to control when to switch direction.1: output0: input						
8	RW	0	M_SDIO_EN	SPI master data output enable, used only in 3-wire mode, to control when to switch direction. 1: output 0: input						
7-0	R	0	RSVD	Reserved						

Table 56 TXD

Bit	Туре	Reset	Symbol	Description
31:0	W	0	TXD	TX buffer. The width is controlled by BUF_WIDTH. If BUF_WIDTH=0, the buffer is a 4x8bit FIFO.
				If BUF_WIDTH=1, it is a 32-bit buffer.

Table 57 RXD

Bit	Туре	Reset	Reset Symbol Description								
31:0	R	0	SPI_RXD	RX buffer. The width is controlled by BUF_WIDTH.							
				If BUF_WIDTH=0, the buffer is a 4x8bit FIFO.							
				If BUF_WIDTH=1, it is a 32-bit buffer.							

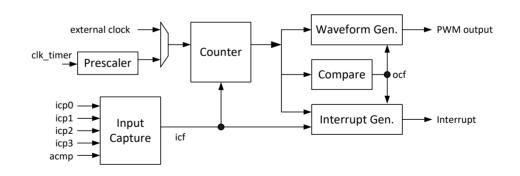
Table 58 SR

Bit	Туре	Resst	Symbol	Description
31:25	R	0	RSVD	Reserved
24	R	0	BUSY	SPI bus busy, O: SS line is high, there is no data transfer 1: SS line is low, there are data transfer Clear automatically when data is transferred completely
23:17	R	0	RSVD	Reserved
16	R	0	SPI_IF	SPI general interrupt flag.0: there is not SPI interrupt1: there are SPI interrupts, cleared automatically when buffer state changes
15:5	R	0	RSVD	Reserved
4	R	0	RX_FIFO_FULL	RX buffer full flag. Cleared automatically when data is read. 0: RX buffer is not full 1: RX buffer is full

3	R	0	TX_FIFO_EMPT	TX buffer empty flag. Cleared automatically when data is put into buffer.
				0: There are data in TX buffer
				1: There is not data in TX buffer
2	R	0	RSVD	Reserved
1	R	0	RX_FIFO_NEPT_IF	RX buffer not empty flag. Users can read RX data when buffer is not empty. 0: RX buffer is empty 1: RX buffer is not empty
0	R	0	TX_FIFO_NFUL_IF	TX buffer not full interrupt flag. Can fill in more data when buffer is not full 0: TX buffer is full 1: TX buffer is not full

11. TIMERS

QN902X includes four timers. The TIMO and TIM1 are 32-bit timers, while TIM2 and TIM3 are 16-bit timers. They can be used for a variety of purposes, including measuring the pulse width or generating the PWM waveforms.


11.1 Features

- 32/16-bit auto-reload up counter
- 16/8-bit capture event counter
- 10-bit programmable prescaler
- Programmable clock sources
 - Four operation modes
 - Free running mode
 - Input capture timer mode
 - Input capture event mode
 - Input capture counter mode
- Compare interrupt
- Input capture interrupt
- Programmable PWM waveform generation
- Pulse width, duty and period measurement
- Input capture on either positive or negative edge, or both edges
- Optional digital noise filtering on capture input
- Programmable interrupt period

11.2 Functional Description

The architecture of Timer is shown in the

Figure 10 Timer architecture

Figure 10 Timer architecture

Note: After power on or reset of the QN902x system, the timer is set to its default values. That means that after QN902x reset, users need to configure register to make sure that the timer/counter work as required.

11.2.1 Clock Sources

The timer has two clock sources. One is the pre-scaled clock from clk_timer, which is generated from the AHB clock. The other one is the external clock input from the GPIO. The frequency of the scaled clock enable is calculated as follows:

$$f_{scled} = \frac{f_{clk_timer}}{PSCL+1}$$

11.2.2 Input Capture Unit

The input capture unit is used to measure duration of the input signal from one edge to another, in number of clock cycles of the timer clock. The triggering edge can be configured as a positive edge, negative edge or both edges using the register bits (ICES[1:0]). When the capture is triggered, the value of the counter is written to the Capture/Compare Register (CCR). The Input Capture interrupt flag (ICF) is asserted at the same time as the counter value is copied into the CCR register. If the interrupt is enabled by register bit ICIE, the input capture flag will generate an interrupt to the MCU.

To improve the noise immunity on the input signal, a noise canceller is added by using a simple noise filter scheme, which can be enabled by setting the Input Capture Noise Canceller Enable (ICNCE).

11.2.3 Compare Unit

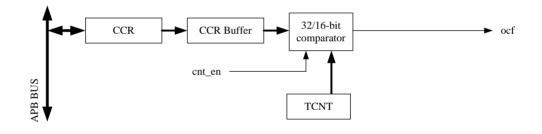


Figure 11 Compare Unit

The 32/16-bit comparator continuously compares counter with the Compare/Capture Register buffer (CCR Buffer). If TCNT equals CCR Buffer, the comparator signals a match. The match will set the Output Compare Flag (OCF) at the next clock cycle of the timer. If enabled (OCIE=1), the Output Compare Flag generates an output compare interrupt. The interrupt can be software-cleared by setting corresponding bit.

The CCR and TOP registers are double buffered for supporting configure compare value and top value on the fly and generating PWM waveform correctly.

11.2.4 PWM Waveform Generation

The PWM waveform can be generated upon the timer overflow or the compare match. The period and duty cycle can be programmed.

11.3 Operation Modes

The operation mode and the behavior of the Timer is defined by the Operation Mode Select bits (OMS[1:0]). **Table 59** summarizes the supported modes of the 32/16 bit timers.

Table 59 Operation Modes

Mode	OMS[1]	OMS[0]	Mode of Operation					
0	0	0	Free Running mode					
1	0	1	Input Capture Timer mode					
2	1	0	Input Capture Event mode					
3	1	1	Input Capture Count mode					

11.3.1 Free Running mode

In this mode, the counter will count from zero to the value stored in the TOP Buffer and then restart from zero. Whenever the counter reaches the value of the TOP Buffer, the Timer Overflow flag (TOV) will be set and an interrupt will be generated if the interrupt is enabled by the register bit (OVIE).

The comparison of TCNT and CCR buffer is always active in this mode. Once TCNT equals to CCR buffer, the Output Compare Flag (OCF) is asserted, and a compare match interrupt is generated if compare interrupt (OCIE) is enabled.

The PWM waveform is generated when PWM output enable bit (pwm_oe) is set. The duty and period of the PWM waveform can be controlled by TOPR, CCR and POL(TCR[14]) registers.

11.3.2 Input Capture Timer mode

The capture timer mode is used to capture the trigger events, and record the timestamp in the CCR. It can be used to calculate the pulse width, the period and the duty.

In this mode, the counter will count from zero and will reset to zero at specified edge of the input capture signal, which is set by ICCLR(TCR[7]. The level change on the Input Capture Pin (ICP) will trigger the capture event. The triggering operation is defined by the Input Capture Edge Select bits (ICES[1:0]).

If the a trigger event occurs happens, the Input Capture Flag (ICF) will be set at the clock cycle. At the same time, the current counter value will be copied to the CCR, and an interrupt will be generated if the Input Capture Interrupt Enable bit (ICIE) is set.

11.3.3 Input Capture Event mode

This mode is used to count the number of events during a period defined by the TOP register. When the event happens, the counter ECNT will be incremented. At the end of the specified period, an Overflow flag (TOV) will be asserted and the value of ECNT will be copied to the register ICETR. The timer counter TCNT and event counter ECNT will be reset to zero and begin a new event counting.

The event source can be selected from the Input Capture Pin (ICP) or the Analog Comparator. The event is triggered by the edge change of ICP or ACMP. The edge can be selected by setting the register bits ICES[1:0]. In this mode, no interrupt will be generated by the trigger event. The timer overflow interrupt will be generated at the end of the specified time.

11.3.4 Input Capture Count mode

This mode is used to calculate how long it takes for specified event (defined by ICES[1:0]) to happen times specified by TOP register.

Once the specific event occurs, the event counter ECNT continually increments and compares its value with TOP register. Once the ECNT equals to the TOP register, the input capture flag (ICF) will be asserted. The input capture interrupt will be generated if the ICIE is set.

11.3.5 Interrupt

The QN902x Timer module has three interrupt sources:

- Input capture interrupt
- Output compare interrupt
- Timer overflow interrupt

All three can be enabled by setting TCR[3:1]. The interrupt flag can be read through IFR register. All three interrupts are valid in 4 operation modes.

11.4 Register Description

11.4.1 Register Map

The Timer 0/1/2/3 have the same registers with different register base addresses as the following.

Timer 0: 0x40002000 Timer 1: 0x40003000 Timer 2: 0x40004000 Timer 3: 0x40005000

Table 60 Timer Register Map

Offset	Name	Description
000h	TCR	Timer control register
004h	IFR	Timer interrupt flag register
008h	TOPR	Timer TOP register
00Ch	ICER	Timer input capture event register
010h	CCR	Timer input capture/compare register
014h	TCNT	Timer counter current value register

11.4.2 Register Description

Table 61 TCR

31											20	19			16	15	14	13	12	11		6	8	7	9	ъ	4	c	2	
RSVD	UVSA	CSS[1]	CSS[0]	RSVD	RSVD	PSCL[9]	PSCL[8]	PSCL[7]	PSCL[6]	PSCL[5]	PSCL[4]	PSCL[3]	PSCL[2]	PSCL[1]	PSCL[0]	PWM OE	IOd	ICNCE	ICSS	ICPS[1]	ICPS[0]	ICES[1]	ICES[0]	ICCLR	CHAIN EN	OMS[1]	OMS[0]	ICIE	OCIE	
0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
۵		RW	RW	R	R	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW										

Bit	Туре	Reset	Symbol	Description
31-30	R	0	RSVD	Reserved
29-28	RW	10b	CSS	clock sources selection 00b = external input clock; 01b = reserved. 10b, 11b = Clk_timer prescaler clock.
27-26	R	0	RSVD	Reserved
25-16	RW	3FFh	PSCL	prescaler factor CLK_SCALED = CLK_TIMER/ (PSCL + 1) Note: when pscl equals to zero, it means non scale.
15	R	0	PWM_OE	PWM output enable 0 = disable; 1 = enable.
14	RW	0	POL	 PWM output polarity control. 0 = Set high on compare match, set low at the end of PWM period; 1 = Set low on compare match, set high at the end of PWM period.
13	RW	0	ICNCE	Input capture noise canceller enable: 0 = disable; 1 = enable.
12	RW	0	ICSS	Input capture source select: 0 = ICP, input capture pin; 1 = ACMP, Analog comparator output.
11-10	RW	0	ICPS	Input Capture Pin Select 00b = icp0; 01b = icp1; 10b = icp2; 11b = icp3.
9-8	RW	0	ICES	Input capture edge select: 00b = positive edge; 01b = negative edge; 10b = positive and negative edge; 11b = reserved.
7	RW	0	ICCLR	Input Capture clear edge selection. 0 = positive edge; 1 = negative edge.

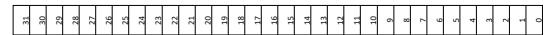

6	RW	0	CHAIN_EN	Daisy chain enable: 0 = disabled; 1 = enabled, using the first stage timer's output TOVF as the second stage timer's input this may be more clear.
5-4	RW	0	OMS	Operation mode select: 00b = Free running timer mode; 01b = Input capture timer mode; 10b = Input capture Event mode; 11b = Input capture Counter mode.
3	RW	0	ICIE	Input capture interrupt enable: 0 = interrupt disabled; 1 = interrupt enabled.
2	RW	0	OCIE	compare interrupt enable: 0 = interrupt disabled; 1 = interrupt enabled.
1	RW	0	TOVIE	Timer/Counter overflow interrupt enable: 0 = interrupt disabled; 1 = interrupt enabled.
0	RW	1	TEN	Timer enable: 0 = disable; 1 = enable.

Table 62 IFR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	'n	2	1	0
RSVD	ICF	OCF	TOVF																												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW1	RW1	RW1

Bit	Туре	Reset	Symbol	Description
31-3	R	0	RSVD	Reserved
2	RW1	0	ICF	Input capture interrupt flag: 0 = no interrupt occurring; 1 = an interrupt pending. Write 1 to clear the interrupt.
1	RW1	0	OCF	Output compare interrupt flag: 0 = no interrupt occurring; 1 = an interrupt pending. Write 1 to clear the interrupt.
0	RW1	0	TOVF	Timer overflow interrupt flag: 0 = no interrupt occurring; 1 = an interrupt pending. Write 1 to clear the interrupt.

Table 63 TOPR

TOPR[31]	TOPR[30]	TOPR[29]	TOPR[28]	TOPR[27]	TOPR[26]	TOPR[25]	TOPR[24]	TOPR[23]	TOPR[22]	TOPR[21]	TOPR[20]	TOPR[19]	TOPR[18]	TOPR[17]	TOPR[16]	TOPR[15]	TOPR[14]	TOPR[13]	TOPR[12]	TOPR[11]	TOPR[10]	TOPR[9]	TOPR[8]	TOPR[7]	TOPR[6]	TOPR[5]	TOPR[4]	TOPR[3]	TOPR[2]	TOPR[1]	TOPR[0]
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW																					

Bit	Туре	Reset	Symbol	Description
31-0	RW	FFFFFF Fh	TOPR[31-0]	Timer TOP register for Free-running and capture event mode: The bit-width of TOPR is same as Timer count; it can be 16 or 32 bits. For capture count mode, The 16 LSB(32-bit timer) or 8 LSB (16-bit timer) is used to set the count event.

Table 64 ICER

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	6	5	4	с	2	1	0
RSVD	ICER[15]	ICER[14]	ICER[13]	ICER[12]	ICER[11]	ICER[10]	ICER[9]	ICER[8]	ICER[7]	ICER[6]	ICER[5]	ICER[4]	ICER[3]	ICER[2]	ICER[1]	ICER[0]															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Я	R	R	R	R	R	Я	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Туре	Reset	Symbol	Description
31-16	R	0	RSVD	reserved
15-0	R	0	ICER	Input Capture Event Register. In input capture event mode, it's the event number occurred during specified time duration. The bit width of ICER can be 16 bit or 24 bit.

Table 65 CCR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	6	5	4	e	2	1	0
CCR[31]	CCR[30]	CCR[29]	CCR[28]	CCR[27]	CCR[26]	CCR[25]	CCR[24]	CCR[23]	CCR[22]	CCR[21]	CCR[20]	CCR[19]	CCR[18]	CCR[17]	CCR[16]	CCR[15]	CCR[14]	CCR[13]	CCR[12]	CCR[11]	CCR[10]	CCR[9]	CCR[8]	CCR[7]	CCR[6]	CCR[5]	CCR[4]	CCR[3]	CCR[2]	CCR[1]	CCR[0]
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH	RWH																					

Bit	Туре	Reset	Symbol	Description
31-0	RWH	FFFFFFFh	CCR[31- 0]	Timer input Capture/Compare Register 0: In free-running mode, it's used as compare register, setting by software;

	In Capture Timer and Capture Counter mode, it's used as capture register to record the timer counter value read by software. The bit-width of CCR is same as Timer count; it can be 16 or 32 bits.
--	--

Table 66 CNT

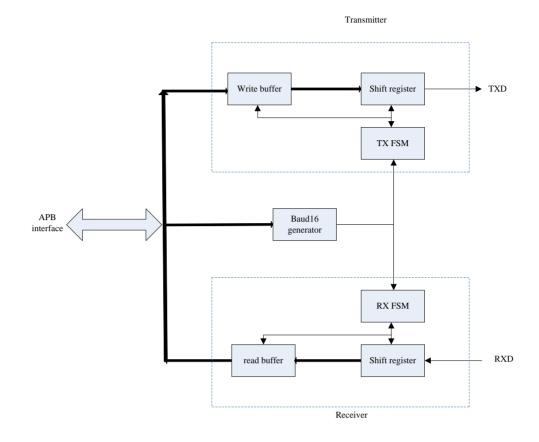
5	30	20	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	
TCNIT[21]	TCINT[30]	TCNT[20]	TCNT[28]	TCNT[27]	TCNT[26]	TCNT[25]	TCNT[24]	TCNT[23]	TCNT[22]	TCNT[21]	TCNT[20]	TCNT[19]	TCNT[18]	TCNT[17]	TCNT[16]	TCNT[15]	TCNT[14]	TCNT[13]	TCNT[12]	TCNT[11]	TCNT[10]	TCNT[9]	TCNT[8]	TCNT[7]	TCNT[6]	TCNT[5]	TCNT[4]	TCNT[3]	TCNT[2]	TCNT[1]	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
-	2 X	<u></u> α	2 Z	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Bit	Туре	Reset	Symbol	Description
31-0	R	0	TCNT[31-0]	Timer counter current value: Read only. The bit-width of TCNT is same as Timer count; it can be 16 or 32 bits.

12. UART

The Universal Asynchronous Receiver Transmitter (UART) is a full-duplex, asynchronous communication interface that communicates with peripheral devices. The QN902x has two UARTs which can work and be configured independently. The UART shares pins with the SPI interface.

12.1 Features


- Configurable full-duplex or half-duplex data transmission
- Hardware flow control option with nRTS and nCTS pins
- Programmable baud rate generator, from 1.2kbps, to 921600bps standard baud rate
- Programmable data order with MSB-first or LSB-first shifting
- One or Two Stop bits
- Odd, even or no-parity bit generation and detection
- Receive and transmit data buffer (one depth)
- Configurable over-sampling rate (8 or 16)
- Parity, buffer overrun and framing error detection
- Transmit and receive interrupts
- Support for Direct Memory Access (DMA)
- Line break generation and detection
- Configurable start- and stop- bit levels
- 8-bit payload mode: 8-bit data without parity
- 9-bit payload mode: 8-bit data plus parity

12.2 Functional Description

The UART allows asynchronous, serial communication between the MCU and external devices. Each UART offers a variety of data formatting options. Dedicated baud rate generator with 22-bit divisor is included, which can generate a wide range of baud rates. Receive data buffer allows UART to receive up to 8 bits data before data is lost and an overflow occurs.

Each UART has five registers. The UART_BAUD is used for the Baud Rate Generator. The UART_CR is used for data formatting, control, and interrupt functions. The UART_Flag is used for status functions. The UART_TXD and UART_RXD are used to send and receive data.

The application software can manage the communication by polling the status flag or using a dedicated UART interrupt. The main elements of the UART and their interactions are shown in the following block diagram.

Any UART bidirectional communication requires a minimum of two pins: Receive Data In (RXD) and Transmit Data Out (TXD):

RXD: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

TXD: Transmit Data Output is the serial data output. When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high level.

12.2.1 Baud Rate Generation

The baud rate generator generates **Baud16** clock signal by dividing down the input clock **UARTCLK**. The baud rate divisor (**BRD**) is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The **Baud16** signal is then divided by 16 to give the baud rate: **Baud rate = Baud16/16 = (UARTCLK)/(16*BRD)**

If we set the reference clock **(UARTCLK)** = 4MHz, then the generated baud rate error can be calculated as follows:

GBRD = integer(UARTCLK/(16*BR)*64+0.5)/64

GBR = UARTCLK/(16*GBRD)

Error = (GBR – BR)/BR*100 where:

BR: Baud Rate

GBRD: Generated baud rate divider

GBR: Generated baud rate

If the required baud rate is 230400 then:

Baud Rate Divisor = $(4 \times 10^6)/(16 \times 230400) = 1.085$ this means BRDI = 1 and BRDF = 0.085. Therefore, fractional part, m = integer ($(0.085 \times 64) + 0.5$) = 5 Generated baud rate divider = 1+5/64 = 1.078Generated baud rate = $(4 \times 10^6)/(16 \times 1.078) = 231911$ Error = $(231911-230400)/230400 \times 100 = 0.656\%$

The maximum error using a 6-bit UARTFBRD Register is equal to $1/64 \times 100 = 1.56\%$. This occurs when m = 1, and the error cumulates over 64 clock ticks.

Below table lists the errors for typical baud rates.

Table 67 Generated baud rate error when UARTCLK = 8MHz

Desired baud rate(kbps)	Oversampling rate = 16	Oversampling rate = 8
	error%	error%
1.2	0.0025	0.0006
2.4	0.0025	-0.0012
4.8	-0.02	0.0025
9.6	0.01	-0.005
14.4	0.01	0.01
19.2	-0.02	0.01
28.8	0.012	0.01
38.4	0.039	-0.02
57.6	-0.087	0.01
76.8	-0.08	0.04
115.2	-0.087	-0.0799
230.4	-0.08	-0.0799

Table 68 Generated baud rate error when uartclk = 4MHz

Desired baud rate(kbps)	Oversampling rate = 16	Oversampling rate = 8
	error%	error%
1.2	0.0025	-0.0012
2.4	-0.005	0.0025
4.8	0.01	-0.005
9.6	-0.02	0.01
14.4	0.007	0.01
19.2	0.04	-0.02
28.8	-0.08	0.01
38.4	-0.08	0.04

57.6	-0.08	-0.0799
76.8	0.16	-0.0799
115.2	-0.08	-0.0799
230.4	0.656	-0.0799

Table 69 Generated baud rate error when uartclk = 2MHz

Desired baud rate(kbps)	Oversampling rate = 16	Oversampling rate = 8
	error%	error%
1.2	-0.008	0.0025
2.4	0.00	-0.005
4.8	-0.02	0.01
9.6	0.0395	-0.02
14.4	-0.083	0.01
19.2	-0.078	0.04
28.8	-0.0798	-0.0799
38.4	0.16	-0.0799
57.6	-0.087	-0.0799
76.8	0.156	0.16
115.2	0.64	-0.0799
230.4		0.6441

12.2.2 Data Format

The UART has a number of available options for data formatting, which can be set using CR (control register). The data transfer begins with the start bit. The CR[LEVEL_INV] is used to define the start and stop conditions. What follows are the data bits. The order in which the bits are transmitted (MSB or LSB first) is specified by CR[BIT_ORDER]. Next one is the parity bit, which can be enabled by CR[PEN]. The UART supports the odd and even parity checks, which can be selected using CR[EPS] The data transmission ends with one or two stop bits which can be set using CR[STIP2_EN].

Figure 19.2 shows the timing for a UART transaction without parity bit enabled. Figure 19.3 shows the timing for a UART transaction with parity enabled (PEN = 1).

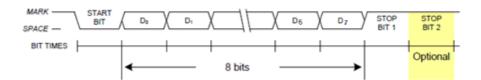


Figure 19.2. UART1 Timing Without Parity

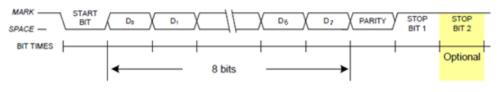


Figure 19.3. UART1 Timing With Parity

12.2.3 Hardware Flow Control

The hardware flow control uses the Clear-To-Send (nCTS) and Request-To-Send (nRTS) signals to control the flow of the data between the UART and the peripheral devices. When the auto-flow is enabled, the remote device is not allowed to send data unless the UART asserts nRTS. If the UART de-asserts nRTS while the remote device is sending data, the remote device is allowed to send one additional byte after nRTS is de-asserted. An overwrite can occur if the remote device violates this rule. Likewise, the UART is not allowed to transmit any data unless the remote device asserts nCTS. Using this feature increases system efficiency and eliminates the possibility of a receive buffer overwrite error due to the long interrupt latency.

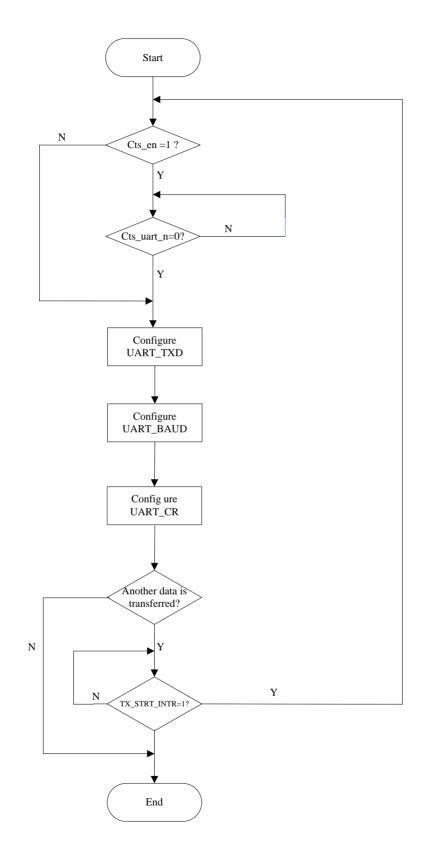
The auto-flow mode can be used in two ways: full auto-flow, automating both nCTS and nRTS; and half auto-flow, automating only nCTS. To enable the full auto-flow, CR[CTS_EN] and CR[RTS_EN] bits must be set. To enable the auto-nCTS-only mode, CR[CTS_EN] bit must be set and CR[RTS_EN] bit cleared.

12.2.3.1 nRTS (UART Output)

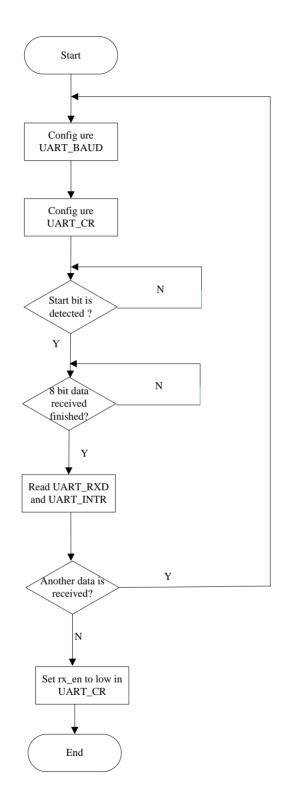
When in full auto-flow mode, nRTS is asserted when the UART register is ready to receive data from the remote transmitter. This assertion occurs when the amount of received data is below the programmable trigger threshold value. When the amount of received data reaches the programmable trigger threshold, nRTS is de-asserted. It is re-asserted when enough bytes are removed from the buffer to lower the data level below the trigger threshold.

12.2.3.2 nCTS (UART Input)

When in auto-flow mode, nCTS is asserted by the remote receiver when the receiver is ready to receive data from the UART. The UART checks nCTS before sending the next byte of data and does not transmit the byte until nCTS is low. If nCTS goes high while


the transfer of a byte is in progress, the transmitter completes sending this byte.

12.2.4 Interrupt


With UART0/1 interrupts enabled, an interrupt is generated each time a transmission is completed (TX_IE is set in UART_CR), or a data byte has been received (RX_IE is set in UART_CR). The UART0/1 interrupt flags except UART_INT are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing the software to determine the cause of the UART0/1 interrupt (transmit complete or receive complete).The UART_INT will be auto cleared by software when all UART0/1 interrupt flags are cleared.

12.2.5 Programming flow

- The write operation consists of the following steps:
- 1. If TX flow control is enabled, wait for valid cts_uart_n (low level).
- 2. Configure UART_TXD register
- 3. Configure UART_BAUD register
- 4. Configure UART_CR register
- 5. Read TX_IE bit in UART_CR register. If TX_IE is 1(TX buffer is empty), then go to step 2, else wait until TX buffer becomes empty.
- 6. If another data is to be transferred, then configure UART_TXD when TX_IE is 1; else finish.(if baud rate and control information remain unchanged, then there is no need to re-configure UART_BAUD and UART_CR)

- The read operation consists of the following steps:
- 1. Configure UART_BAUD
- 2. Configure UART_CR
- 3. Receive data after detecting valid start-bit
- 4. After data is received, read UART_RXD and UART_INT
- 5. If another data is to be received ,then go to step 1;else set RX_EN in UART_CR 0 and finish

12.3 Register Description

12.3.1 Register Map

The UARTO and UART1 have the same register map, but different base addresses. The base address of UART0 is 0x40007000. The base address of UART1 is 0x4000A000.

Table 70 UART0/UART1 Register Map

Offset	Name	Reset	Description
000h	UART_TXD		Tx data register
004h	UART_RXD		Rx data register
008h	UART_BAUD	0x00000403	Baud rate register
00Ch	UART_CR	0x0000880	Control register
010h	UART_FLAG	0x0000000	Status register

12.3.2 Register Description

Table 71 TXD

Bit	Туре	Reset	Symbol	Description
31-8	R	0	RSVD	Reserved
7-0	W	0	TXD	Tx buffer data

Table 72 RXD

Bit	Туре	Reset	Symbol	Description
31-8	R	0	RSVD	Reserved
7-0	R	0	RXD	Rx buffer data

Table 73 BAUD

Bit	Туре	Reset	Symbol	Description
31-24	R	0	RSVD	Reserved
23-8	RW	08h	BAUD_DIV_INT	The integer baud rate divisor
7-6	R	0	RSVD	Reserved
5-0	RW	03h	BAUD_DIV_FRC	The fractional baud rate divisor

Table 74 CR

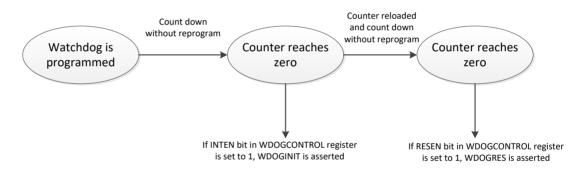
Bit	Туре	Reset	Symbol	Description
31-23	R	0	RSVD	Reserved

22	RW	0	UART_IE	UART interrupt enable
				0: General UART interrupts are disabled
24	D14/			1: General UART interrupts can be enabled
21	RW	0	BE_IE	Break error interrupt enable
				0: Break error interrupt is disabled
				1: Break error interrupt is enabled
20	RW	0	PE_IE	Parity error interrupt enable
				0: Parity error interrupt is disabled
				1: Parity error interrupt is enabled
19	RW	0	FE_IE	Framing error interrupt enable
				0: Framing error interrupt is disabled
				1: Framing error interrupt is enabled
18	RW	0	OE_IE	Overrun error interrupt enable
				0: Overrun error interrupt is disabled
				1: Overrun error interrupt is enabled
17	RW	0	TX_IE	Transmit status interrupt enable
				0: Transmit status interrupt is disable
				1: Transmit status interrupt is enabled
16	RW	0	RX_IE	Receive interrupt status enable
				0: Receive interrupt status is disable
				1: Receive interrupt status is enabled
15-12	RW	0	RSVD	Reserved
11	RW	1	OVS	Oversampling rate.
				1 = indicates oversampling rate is 16
				0 = indicates oversampling rate is 8
10	RW	0	CTS_EN	CTS hardware flow control enable.
				0: CTS hardware flow control is disabled
				1: CTS hardware flow control is enabled
9	RW	0	RTS_EN	RTS hardware flow control enable.
				0: CTS hardware flow control is disabled
				1: CTS hardware flow control is enabled
8	RW	0	BREAK	Send break. Causes a break condition to be
				transmitted to the receiving UART.
				0: No effect on TXD output
				1: Forces TXD output to 0, after completing
				transmission of the current character. When TXD
				line is idle, one frame low level is transmitted on
				line if this bit is set to 1.
				For normal use, this bit must be cleared to 0.
7	RW	1	LEVEL_INV	The level of start bit and stop bit
				1 = indicates valid start bit is low level and valid
				stop bit is high level
				0 = indicates valid start bit is high level and valid
				stop bit is low level
6	RW	0	STP2 EN	Two stop bits select.
			_	0: 1 stop bit at end of the frame
				1: 2 stop bits at the end of frame
5	RW	0	BIT_ORDER	MSB/LSB transmit/receive first
	-	-		1 = LSB first in the data frame
				0 = MSB first in the data frame
4	RW/	0	PFN	
4	RW	0	PEN	Parity enable:
4	RW	0	PEN	

3	RW	0	EPS	Even parity select. Controls the type of parity the UART uses during transmission and reception: 0 = odd parity. The UART generates or checks for an odd number of 1s in the data and parity bits. 1 = even parity. The UART generates or checks for an even number of 1s in the data and parity bits.
2	RW	0	RX_EN	Receive enable. 0: Receive is disabled When the UART is disabled in the middle of reception, it completes the current character before stopping. 1: Receive is enabled
1	RW	0	TX_EN	Transmit enable. 0: Transmit is disabled. When the UART is disabled in the middle of transmission, it completes the current character before stopping. 1: Transmit is enabled.
0	RW	0	UART_EN	UART enable: 0 = UART is disabled. If the UART is disabled in the middle of transmission or reception, it completes the current character before stopping. 1 = the UART is enabled.

Table 75 FLAG

Bit	Туре	Reset	Symbol	Description
31-8	R	0	RSVD	Reserved
7	R	0	TX_BUSY	TXD line status Write: invalid Read: 1 = indicates UART tx buffer is full or uart is transmitting data(when send BREAK,it is not busy) 0 = other case
6	R	0	UART_INT	UART interrupts flag. This bit will be auto cleared When all UART interrupts are cleared by software. Write: invalid Read: 0: No UART interrupt is pending. 1: UART interrupts are pending
5	RW1	0	BE_INT	Break error interrupt status. Write: 0 : Invalid 1 : Clear this interrupt. Read: 0: No break interrupt signal has been received 1: Indicates that the RxDn input is held in the logic 0 state for a duration longer than one frame transmission time.
4	RW1	0	PE_INT	Parity error interrupt status.


		-		1
				Write:
				0 : Invalid
				1: Clear this interrupt.
				Read:
				0: No detected Parity error interrupt.
				1: The receiver has detected an unexpected
				parity condition.
3	RW1	0	FE_INT	Framing error interrupt status.
			_	Write:
				0 : Invalid
				1: Clear this interrupt.
				Read:
				0: No Framing error interrupt.
				1: The received data does not have a valid stop
				bit.
2	RW1	0	OE INT	Overrun error interrupt status.
			_	Write:
				0 : Invalid
				1: Clear this interrupt.
				Read:
				0: No overrun error interrupt.
				1: New data has overwritten the old data before
				the old data has been read.
1	R	0	TX_INT	TX data (UART_TXD) ready interrupt. It is auto
			_	cleared when UART_TXD is written.
				Write: invalid
				Read:
				0: TX buffer is not empty.
				1: Tx buffer is empty and ready to reload data.
0	R	0	RX_INT	RX data(UART_RXD) ready interrupt. It is auto
			_	cleared when UART_RXD is read.
				Write: Invalid
				Read:
				0: RX buffer is not full means that the receiver
				not receives whole byte.
				1: Rx buffer is full.
			I	

13. Watch-Dog Timer (WDT)

The Watchdog timer (WDT) is a 32-bit down-count timer intended as a recovery method in situations where the CPU may be subjected to software upset.

13.1 Functional Description

The WDT resets the system when the software fails to clear the WDT within the selected time interval. The WDT can be configured either as a Watchdog Timer or as a timer for general-purpose use. If the watchdog function is not needed in an application, it is possible to configure the Watchdog Timer to be used as an interval timer that can be used to generate interrupts at selected time intervals. The maximum timeout interval is 1.5 days. The WDT is initialized from the Reload Register, WDOGLOAD. The module generates a regular interrupt, WDOGINT, depending on a programmed value. The counter decrements by one on each positive clock edge of WDOGCLK when the clock enable, WDOGCLKEN, is HIGH. The watchdog monitors the interrupt and asserts a reset WDOGRES signal, when the counter reaches 0, and the counter is stopped. On the next enabled WDOGCLK clock edge, the counter is reloaded from the WDOGLOAD register and the count-down sequence continues. If the interrupt is not cleared by the time that the counter next reaches 0, then the watchdog module reasserts the reset signal.

Figure 12 Watchdog Operation Flow Diagram

13.2 Register Description

13.2.1 Register Map

The RTC registers' base address is 0x4000_1000.

Table 76 Timer Register Map

Offset	Name	Description
000h	LOAD	Contains the value from which the counter is to decrement. When this register is written to, the count is immediately restarted from the new value. The minimum valid value is 1.
004h	VALUE	Current value of the decrementing counter.
008h	CTRL	R/W register that enables the software to control the

		watchdog unit.
00Ch	INTCLR	A write of any value to the Register clears the watchdog interrupt, and reloads the counter from the value in WDOGLOAD.
010h	RAWINTSTAT	Read-only. It indicates the raw interrupt status from the counter.
014h	MASKINTSTA T	Read-only. It indicates the masked interrupt status from the counter.
C00h	LOCK	Write-only. This register disables the write-accesses to all other registers.
F00h	ITCR	R/W. It is a single-bit register that enables integration test mode.
F04h	ITOP	Write-only. When in integration test mode, the values in this register directly drive the enabled interrupt output and reset output.

13.2.2 Register Description

Table 77 Watchdog Load Register (WDOGLOAD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	c	2	1	0
LOAD[31]	LOAD[30]	LOAD[29]	LOAD[28]	LOAD[27]	LOAD[26]	LOAD[25]	LOAD[24]	LOAD[23]	LOAD[22]	LOAD[21]	LOAD[20]	LOAD[19]	LOAD[18]	LOAD[17]	LOAD[16]	LOAD[15]	LOAD[14]	LOAD[13]	LOAD[12]	LOAD[11]	LOAD[10]	LOAD[9]	LOAD[8]	LOAD[7]	LOAD[6]	LOAD[5]	LOAD[4]	LOAD[3]	LOAD[2]	LOAD[1]	LOAD[0]
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW																					

Bit	Туре	Reset	Symbol	Description
31-0	RW	FFFFFF FFh	LOAD	Contains the value from which the counter is to decrement. When this register is written to, the count is immediately restarted from the new value. The minimum valid value is 1.

Table 78 Watchdog Value Register (WDOGVALUE)

VALUE[31] VALUE[30]

Bit	Туре	Reset	Symbol	Description
31-0	RW	FFFFFFFh	VALUE	The current value of the decrementing counter.

Table 79 Watchdog Control Register (WDOGCONTROL)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	б	∞	7	6	5	4	3	2	1	0
RSVD	RESEN	INTEN																													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	RW	RW

Bit	Туре	Reset	Symbol	Description
31-2	R	0	RSVD	Reserved
1	RW	0	RESEN	Enable watchdog reset output, WDOGRES . Acts as a mask for the reset output. Set HIGH to enable the reset, and LOW to disable the reset.
0	RW	0	INTEN	Enable the interrupt event, WDOGINT . Set HIGH to enable the counter and the interrupt, and set LOW to disable the counter and interrupt. Reloads the counter from the value in WDOGLOAD when the interrupt is enabled, and was previously disabled.

Table 80 Watchdog Clear Interrupt Register (WDOGINTCLR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	ŝ	2	1	0
RSVD	INTCLR																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Я	Я	Я	Я	Я	Я	Я	R	R	R	R	R	Я	Я	R	Я	R	Я	R	R	R	Я	Я	Я	Я	R	R	R	Я	R	R	RW

Bit	Туре	Reset	Symbol	Description
31-1	R	0	RSVD	Reserved
0	RW	0	INTCLR	A write of any value to the Register clears the watchdog interrupt, and reloads the counter from the value in WDOGLOAD.

Table 81 Watchdog Raw Interrupt Status Register (WDOGRISR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
RSVD	RAWINTSTAT																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • • • • • • • • • • • • • • • • • • •
----------------------------------------	-----------------------------------------

Bit	Туре	Reset	Symbol	Description
31-1	R	0	RSVD	Reserved
0	R	0	RAWINTSTA T	Raw interrupt status from the counter. It indicates the raw interrupt status from the counter. This value is ANDed with the interrupt enable bit from the control register to create the masked interrupt, which is passed to the interrupt output pin.

## Table 82 Watchdog Interrupt Status Register (WDOGMIS)

0 0

Bit	Туре	Reset	Symbol	Description
31-1	R	0	RSVD	Reserved
0	R	0	MASKINTSTAT	Enabled interrupt status from the counter It indicates the masked interrupt status from the counter. This value is the logical AND of the raw interrupt status with the INTEN bit from the control register, and is the same value that is passed to the interrupt output pin.

## Table 83 Watchdog Lock Register (WDOGLOCK)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	S	4	ю	2	1	0
LOCK[31]	LOCK[30]	LOCK[29]	LOCK[28]	LOCK[27]	LOCK[26]	LOCK[25]	LOCK[24]	LOCK[23]	LOCK[22]	LOCK[21]	LOCK[20]	LOCK[19]	LOCK[18]	LOCK[17]	LOCK[16]	LOCK[15]	LOCK[14]	LOCK[13]	LOCK[12]	LOCK[11]	LOCK[10]	LOCK[9]	LOCK[8]	LOCK[7]	LOCK[6]	LOCK[5]	LOCK[4]	LOCK[3]	LOCK[2]	LOCK[1]	LOCK[0]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW																					

Bit	Туре	Reset	Symbol	Description
31-0	W	0	LOCK[31-0]	Writing 0x1ACCE551to this register enables write access to all other registers. Writing any other value disables write access to all other WDT registers. A read returns the lock status:
				0 = Write access to all other registers is enabled

		<b>1</b> = Write access to all other registers is disabled.

### Table 84 Watchdog Integration Test Control Register (WDOGITCR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	б	∞	7	9	5	4	ю	2	1	0
RSVD	INTEGTESTEN																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	R	В	R	R	R	Я	Я	R	R	R	R	R	Я	R	R	R	Я	R	Я	R	R	R	Я	Я	Я	R	R	R	Я	Я	RW

Bit	Туре	Reset	Symbol	Description
31-1	R	0	RSVD	Reserved
0	RW	0	INTEGTESTEN	When set HIGH, places the watchdog into integration test mode

# Table 85 Watchdog Integration Test Output Set Register (WDOGTITOP)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	'n	2	1	c
RSVD																															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Я	R	R	R	R	R	Я	R	R	Я	R	Я	Я	Я	Я	Я	Я	Я	R	R	Я	R	R	R	R	R	Я	Я	Я	R	Я	14/0

Bit	Туре	Reset	Symbol	Description
31-2	R	0	RSVD	Reserved
1	R	0	RSVD	Reserved
0	W	0	INTEGTESTOUT SET	Value output on WDOGRES when in Integration Test Mode

# **14. GPIO**

The QN9020/1 processor provides 31/15 highly-multiplexed general-purpose I/O (GPIO) pins for generating and capturing application-specific input and output signals.

## 14.1 Instruction

Each pin can be programmed as an output, an input, or as bidirectional pin for certain alternate functions overriding the value programmed in the GPIO direction registers. When programmed as an input, the GPIO can also serve as an interrupt source. All GPIO pins are configured as inputs with pull-ups during the assertion of all resets, and they remain inputs until configured otherwise. In addition, select special-function GPIO pins serve as bidirectional pins where the I/O direction is driven from the respective unit overriding the GPIO direction register.

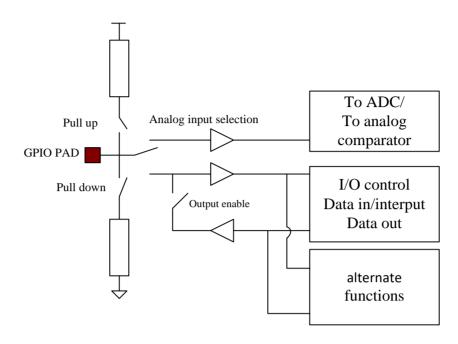
## 14.2 Features

- Programmable interrupt generation capability
- Registers for alternate function switching with pin multiplexing support
- Inputs are sampled using a double flip-flop to avoid meta-stability issues
- All ports have programmable internal pull-up/pull-down/high-z
- As output, the GPIOs can be individually cleared or set

## 14.3 Functional Description

The GPIO signals operate as either general-purpose I/O (GPIO) or as alternate function outputs.

Most GPIO pins are multiplexed with the alternate functions of the QN902x processor. Certain modes within the serial controllers require extra pins. These functions are externally available through specific GPIO pins and their use is described in the following paragraphs.


### 14.3.1 General purpose I/O

During and just after reset, the alternate functions are not active and the I/O ports are configured in the GPIO digital input mode.

All GPIOs can be configured as inputs or outputs by setting Pin Output Configuration registers OUTENABLESET and OUTENABLECLR. If the pin is configured as an output, its values can be set by writing to the Data Output Register DATAOUT. If the pin is configured as an input, the programmed output state re-occurs when the pin is reconfigured as an output.

The state of a GPIO pin can be validated by reading the GPIO Pin Output Enable register OUTENABLESET. To get the value of a GPIO pin, one can read the Data Value register DATA. The software can read these two registers at any time, even if the pin is configured as an output.

The figure following shows a block diagram of a single GPIO pin.



#### Figure 13 Single GPIO pin diagram

### 14.3.2 External interrupt/wakeup lines

Each GPIO pin programmed as a digital input can detect edges either with a rising or a falling edge. This can be set using the GPIO Interrupt Type Set register INTTYPESET. The Interrupt Enable register INTENSET is used to enable triggering the interrupt request based on the edge-detection. The INTSTATUS register can be used to read the IRQ status.

#### 14.3.3 I/O port W/R control

The MASKBYTExxTOxx register masks the read and/or write accesses to the masked DATAOUT register. Only bits set to 1 in the MASK register enable the corresponding bits in the masked registers to be changed or their values to be read.

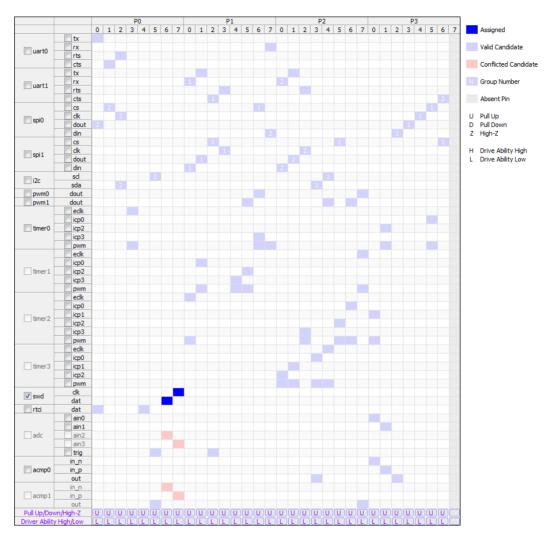
Setting any mask bit to 1 allows the pin output to be changed by write operations to the pin's DATAOUT registers. The current state of the pin can be read from the OUTENABLESET registers. The current value of the data output register can read suing DATAOUT register

Setting any mask bit to 0 allows write operations to the pin's DATAOUT registers to have no effect on the pin's output level. Read operations return 0 regardless of the pin's level or the value of the DATAOUT register.

#### 14.3.4 GPIO Operation as Alternate Function

The GPIO pins can have as many as three alternate input and three alternate output functions. If a GPIO is used for an alternate function, then it cannot be used as a GPIO at the same time. When using an alternate function of a GPIO signal, one has to first configure the alternate function and then enable the corresponding unit. The unit must be disabled before changing the alternate function signals of the GPIO.

For example, P0_2 can be configured as I2CSDA by configuring **PIN_CTRL** register **bit 5 and bit 4** as 01 as below GPIO PIN MUX Table. Similarly, configure **PIN_CTRL** register **bit 5 5 and bit 4** as 10 to make P0_2 work in SPIOCLK function.


The following table shows the alternate mapping of all the GPIOs.

			GPIO PIN MUX Tab	le		
PIN	00	01	10	11	Test port	pin_ctrl
P0_0	GPIO0	UART0_TXD(O)	SPI0_DAT(I/O)	RTCI(I)	Test_pin[3]	[1:0]
P0_1	GPIO1	NC	SPI0_CS0(I/O)	UART0_CTSn(I)	NC	[3:2]
P0_2	GPIO2	I2C_SDA(I/O)	SPI0_CLK(I/O)	UART0_RTSn(O)	NC	[5:4]
P0_3	GPIO3	RADIO_EN(O)	CLKOUT0(O)	TIMER0_eclk(I/O)	Test_pin[2]	[7:6]
P0_4	GPIO4	NC	CLKOUT1(O)	RTCI(I)	NC	[9:8]
P0_5	GPIO5	I2C_SCL(I/O)	ADCT(I)	ACMP1_O(O)	NC	[11:10]
P0_6	SW_DAT	GPIO6	AIN2(AI)	ACMP1-(AI)	Test_pin[1]	[13:12]
P0_7	SW_CLK	GPIO7	AIN3(AI)	ACMP1+(AI)	Test_pin[0]	[15:14]
P1_0	GPIO8	SPI1_DIN(I)	UART1_RXD(I)	TIMER2_eclk(I/O)	Test_pin[8]	[17:16]
P1_1	GPIO9	SPI1_DAT(I/O)	UART1_TXD(O)	TIMER1_0(I/O)	Test_pin[7]	[19:18]
P1_2	GPIO10	SPI1_CSO(I/O)	UART1_CTSn(I)	ADCT(I)	Test_pin[6]	[21:20]
P1_3	GPIO11	SPI1_CLK(I/O)	UART1_RTSn(O)	CLKOUT1(O)	Test_pin[5]	[23:22]
P1_4	GPIO12	RDYN(O)	NC	TIMER1_3(I/O)	NC	[25:24]
P1_5	GPIO13	RADIO_EN(O)	PWM1(O)	TIMER1_2(I/O)	NC	[27:26]
P1_6	GPIO14	SPI0_CS1_O(O)	PWM0(O)	TIMER0_3(I/O)	NC	[29:28]
P1_7	GPIO15	UART0_RXD(I)	SPIO_DIN (I)	TIMER0_o(O)	Test_pin[4]	[31:30]
P2_0	GPIO 16	SPI1_DIN(I)	UART1_RXD(I)	TIMER3_2(I/O)	NC	[33:32]
P2_1	GPIO 17	SPI1_DAT(I/O)	UART1_TXD(O)	TIMER3_1(I/O)	NC	[35:34]
P2_2	GPIO 18	SPI1_CLK(I/O)	UART1_RTSn(O)	TIMER2_3(I/O)	NC	[37:36]
P2_3	GPIO 19	I2C_SDA(I/O)	ACMP0_O(O)	TIMER3_0(I/O)	Test_pin[12]	[39:38]
P2_4	GPIO 20	I2C_SCL(I/O)	PWM1(O)	TIMER3_eclk(I/O)	Test_pin[11]	[41:40]
P2_5	GPIO 21	SPI1_CS1_O(O)	NC	TIMER2_2(I/O)	NC	[43:42]
P2_6	GPIO 22	Antenna_O (O)	PWM1(O)	TIMER2_0(I/O)	Test_pin[10]	[45:44]
P2_7	GPIO 23	ACMP1_O(O)	PWM0(O)	TIMER1_eclk(I/O)	Test_pin[9]	[47:46]
P3_0	GPIO 24	TIMER2_1(I/O)	AINO(AI)	ACMP0-(AI)	Test_pin[14]	[49:48]
P3_1	GPIO 25	TIMER0_2(I/O)	AIN1(AI)	ACMP0+(AI)	Test_Pin[13]	[51:50]
P3_2	GPIO 26	SPIO_DIN (I)	NC	ACMP0_O(O)	Test_Pin[1]	[53:52]
P3_3	GPIO 27	SPI0_DAT(I/O)	CLKOUT0(O)	NC	Test_Pin[0]	[55:54]
P3_4	GPIO 28	SPI0_CLK(I/O)	NC	NC	NC	[56]
P3_5	GPIO 29	SPI0_CS0(I/O)	INT_FM(I)	TIMER0_0(I/O)	NC	[58:57]
P3_6	GPIO 30	SPI1_CSO(I/O)	UART1_CTSn(I)	NC	NC	[60:59]

Remark: P2_6 also supports the fast boot function on chip version E. (pull up to enable the function). This function bypasses the QN902x ISP mode in the bootloader (if enabled).

#### 14.3.5 Tool for configure GPIO

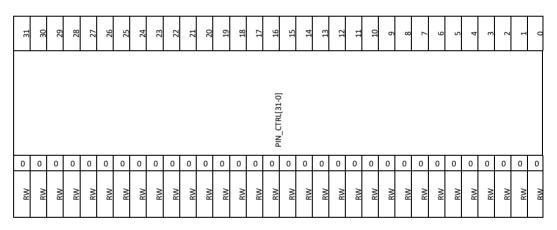
The software development kit (SDK) contains a tool QnDriverTools, which can be used for configuring GPIO pins in a quick and convenient way. The following figure shows the



GUI of QnDriverTools. For more details of QnDriverTools in the SDK, please refer to guide (proper name to be added)

## 14.4 Register description

The Pin Mux Registers are based on 0x40000000 and the GPIO Registers are based on 0x50000000.


#### 14.4.1 Pin Mux Registers Description

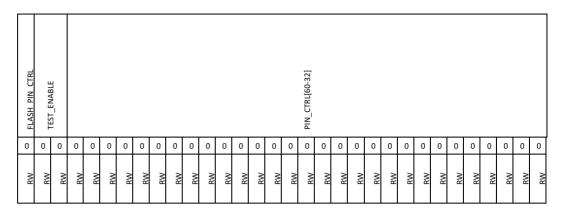
#### **Table 86 System Clock Register**

Offset	Name	Description
20h	PIN_MUX_CTRL0	PIN Mux control 0
24h	PIN_MUX_CTRL1	PIN Mux control 1
28h	PIN_MUX_CTRL2	PIN Mux control 2
2Ch	PAD_DRV_CTRL	PAD Driver control
30h	PAD_PULL_CTRL0	PAD Pull-up and Pull-down control 0
34h	PAD_PULL_CTRL0	PAD Pull-up and Pull-down control 1
3Ch	IO_WAKEUP_CTRL	Controller IO as wakeup source

#### 14.4.1.1 Pin_Mux_CTRL0

PIN_MUX_CTRL0 Offset = 20h (PMU)




#### Description of Word

Bit	Туре	Reset	Name	Description
31-0	RW	0h	PIN_CTRL[31-	Please see GPIO MUX Table;
			0]	

#### 14.4.1.2 PIN_MUX_CTRL1

PIN_MUX_CTRL1 Offset = 24h (PMU)





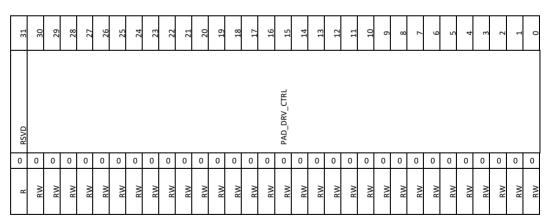
Description of Word

Bit	Туре	Reset	Symbol	Description
31	RW	0	FLASH_PIN_CTRL	When External Flash is used,
				0 = P1_0,P1_1,P1_2,P1_3 port is for SPI Flash;
				1 = P1_0,P1_1,P1_2,P1_3 port isn't for SPI Flash;
30	RW	0	TEST_ENABLE[1]	1 is Enable test pin that share with SWD interface;
29	RW	0	TEST_ENABLE[0]	1 is Enable other 13 test pins;
28-0	RW	0h	PIN_CTRL[60-32]	Please see GPIO MUX Table;

#### 14.4.1.3 PIN_MUX_CTRL2

PIN_MUX_CTRL2 Offset = 28h

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	ß	4	ĸ	2	1	0
		TEST_CTRL[4 :0]			RSVD			UART1 PIN SEL	~	ADCT PIN SEL	RSVD	SPIO PIN SEL	SPI1 PIN SEL																		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	Я	R	R	R	R	R	R	R	R	R	R	R	R	R	Я	R	R	R	R	RW	RW	RW	RW	RW	R	RW	RW


#### Description of Word

Bit	Туре	Reset	Name	Description
31-27	RW	0	TEST_CTRL[4 :0]	Control Test Pin source;
26-8	R	0	RSVD	Reserved
7	RW	1	CLK_OUT_SEL[1]	0 = CLKOUT1 is HCLK;
				1 = CLKOUT1 is CLK_32K
6	RW	0	CLK_OUT_SEL[0]	0 = CLKOUT0 is HCLK;
				1 = CLKOUT0 is CLK_32K

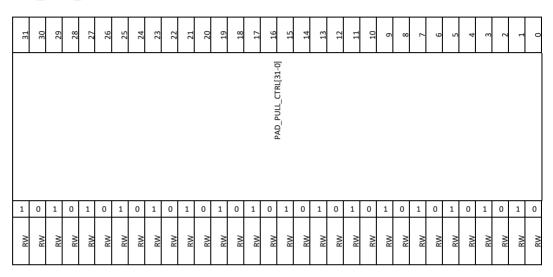
		0		0 worth at a compacted with D1 2.
5	RW	0	UART1_PIN_SEL	0 = uart1_cts is connected with P1_2;
				uart1_rxd is connected with P1_0;
				1 = uart1_cts is connected with P3_7;
				uart1_rxd is connected with P2_0;
4	RW	0	I2C_PIN_SEL	0 = i2c_scl is connected with P2_4;
				I2c_sda is connected with P2_3;
				1 = 2c_scl is connected with P0_5;
				I2c_sda is connected with P0_2;
3	RW	0	ADCT_PIN_SEL	0 = ADC Trigger is connected with P1_2;
				1 = ADC Trigger is connected with P0_5;
2	R	0	RSVD	Reserved
1	RW	0	SPI0_PIN_SEL	0 = SPI 0 CLK is connected with P0_2;
				SPI 0 CS0 is connected with P0_1;
				SPI 0 Data out is connected with P0_0;
				SPI 0 Data in is connected with P1_7;
				1 = SPI 0 CLK is connected with P3_5;
				SPI 0 CS0 is connected with P3_6;
				SPI 0 Data out is connected with P3_4;
				SPI 0 Data in is connected with P3_3;
0	RW	0	SPI1_PIN_SEL	0 = SPI 1 CLK is connected with P1_3;
				SPI 1 CS0 is connected with P1_2;
				SPI 1 Data out is connected with P1_1;
				SPI 1 Data in is connected with P1_0;
				$1 = SPI \ 1 \ CLK$ is connected with $P2_2$ ;
				SPI 1 CS0 is connected with P3_7;
				SPI 1 Data out is connected with P2 1;
				SPI 1 Data in is connected with P2_0;
L				()

### 14.4.1.4 PAD_DRV_CTRL

PAD_DRV_CTRL Offset = 2Ch



#### Description of Word


Bit	Туре	Reset	Name	Description
31	R	0	RSVD	
30-0	RW	0h	PAD_DRV_CTRL	Every bit control one GPIO PAD driver ability; 0 = Low driver ;

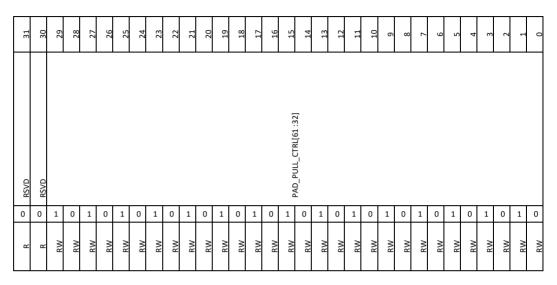
**QN902x** 

_			
			1 = High driver.

### 14.4.1.5 PAD_PULL_CTRL0

PAD_PULL_CTRL0 Offset = 30h (PMU)



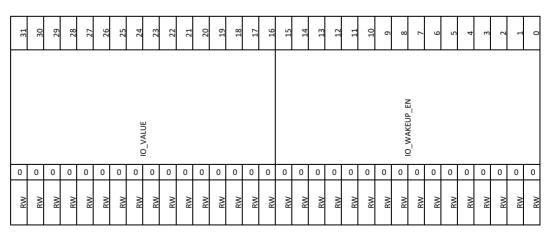

Description of Word

Bit	Туре	Reset	Name	Description
31-0	RW	AAAAAAAAh	PAD_PULL_CTRL[31-	Every two bit control one GPIO PAD Pull Up
			0]	or Pull Down;
				00b = High-Z,
				01b = Pull-down,
				10b = Pull-up,
				11b = Reserved;

**User Manual** 

### 14.4.1.6 PAD_PULL_CTRL1

PAD_PULL_CTRL1 Offset = 34h (PMU)




Description of Word

Bit	Туре	Reset	Name	Description
31-30	R	0	RSVD	
29-0	RW	2AAAAAAAh	PAD_PULL_CTRL[61-32]	Every two bit control one GPIO PAD Pull Up or Pull Down; 00b = High-Z, 01b = Pull-down, 10b = Pull-up, 11b = Reserved

#### 14.4.1.7 IO_WAKEUP_CTRL

IO_WAKEUP_CTRL Offset = 3Ch (PMU)



Description of Word

Bit	Туре	Reset	Name	Description
31-16	RW	0	IO_VALUE	Control GPIO 0 ~ 15 Interrupt cause;
				0 = When GPIO x is 1, generate interrupt;
				1 = When GPIO x is 0, generate interrupt;
15-0	RW	0	IO_WAKEUP_EN	Control GPIO 0 ~ 15 as Wakeup source;
				0 = Disable GPIO x as Wakeup source;
				1 = Enable GPIO x as Wakeup source;

# 14.4.2 GPIO Register Description

The GPIO register's base address is 0x50000000.

Offset	Name	Description
000h	DATA	Data value [31:0]:
		Read Sampled at pin.
		Read back value is going through double flip-flop
		synchronization logic with a delay of two cycles.
004h	DATAOUT	Data output Register value [31:0]:
		Write output data.
		Read Current value of data output register.
010h	OUTENABLESET	Output enable set [31:0]:
		Write:
		1 Set the output enable bit. Configure the pin as
		output.
		0 No effect.
		Read:
		0 Indicate the signal direction as input.
		1 Indicate the signal direction as output.
014h	OUTENABLECLR	Output enable clear [31:0]:
		Write:
		1 Clear the output enable bit. Configure the pin as
		input.
		0 No effect.
		Read:
		0 Indicate the signal direction as input.
		1 Indicate the signal direction as output.
018h	reserved	reserved
01Ch	reserve	reserve
020h	INTENSET	Interrupt enable set [31:0]:
		Write 1 Set the enable bit.
		0 No effect.
		Read back 0 Interrupt disabled.
		1 Interrupt enabled.
024h	INTENCLR	Interrupt enable clear [31:0]:
		Write 1 Clear the enable bit.
		0 No effect.
		Read back 0 Interrupt disabled.
		1 Interrupt enabled.
028h	INTTYPESET	Interrupt type set [31:0]:
		Write 1 Set the interrupt type bit.
		0 No effect.

		Read back 0 For LOW or HIGH level.
		1 For falling edge or rising edge.
02Ch	INTTYPECLR	Interrupt type clear [31:0]:
0_0		Write 1 Clear the interrupt type bit.
		0 No effect.
		Read back 0 For LOW or HIGH level.
		1 For falling edge or rising edge.
030h	INTPOLSET	Polarity-level, edge IRQ configuration [31:0]:
05011		Write 1 Set the interrupt polarity bit.
		0 No effect.
		Read back 0 For LOW level or falling edge.
		1 For HIGH level or rising edge.
034h	INTPOLCLR	Polarity-level, edge IRQ configuration [31:0]:
03411	INTFOLCER	Write 1 Clear the interrupt polarity bit.
		0 No effect.
		Read back 0 For LOW level or falling edge.
		1 For HIGH level or rising edge.
038h	INTSTATUS	IRQ status clear Register [31:0]
0381	INISTATUS	Write 1 To clear the interrupt request.
		0 No effect.
		Read back [31:0] IRQ status Register.
400h~7FCh	MASKBYTE7TO0	Bits [9:2] of the address value are used as enable bit
40011 /1 Ch	WIASKBITE/TOO	mask for the access
		[31:8] Not used. Write is ignored, and read as 0.
		[7:0] Data for lower byte access, with [9:2] of address
		value use as enable mask for each bit.
800h~BFCh	MASKBYTE15TO8	Bits [9:2] of the address value are used as enable bit
	WASKETTEISTOO	mask
		for the access:
		[31:16],[7:0] Not used. Write is ignored, and read as
		0.
		[15:8] Data for lower byte access, with [9:2] of
		address value use as enable mask for each bit.
000h~3FCh	MASKBYTE23TO1	Bits [9:2] of the address value are used as enable bit
	6	mask
	Ŭ	for the access:
		[31:24],[15:0] Not used. Write is ignored, and read as
		0.
		[23:16] Data for lower byte access, with [9:2] of
		address value use as enable mask for each bit.
400h~7FCh	MASKBYTE31TO2	Bits [9:2] of the address value are used as enable bit
	4	mask
		for the access:
		[23:0] Not used. Write is ignored, and read as 0.
		[31:24] Data for lower byte access, with [9:2] of
		address value use as enable mask for each bit.

#### **Register Description**

#### Table 87 DATA

Bit	Туре	Reset	Symbol	Description
31-0	RWH	-	DATA[31-0]	Data value

#### **Table 88 DATAOUT**

Bit	Туре	Reset	Symbol	Description
31-0	RWH	0	DATAOUT[31-0]	Data output Register value

#### **Table 89 OUTENABLESET**

Bit	Туре	Reset	Symbol	Description
31-0	RW1	0	OUTENABLESET[31-0]	Output enable set

#### **Table 90 OUTENABLECLR**

Bit	Туре	Value	Symbol	Description
31-0	RW1	0	OUTENABLECLR[31-0]	Output enable clear

#### **Table 91 INTENSET**

Bit	Туре	Reset	Symbol	Description
31-0	RW1	0	INTENSET[31-0]	Interrupt enable set

#### Table 92 INTENCLR

В	Bit	Туре	Reset	Symbol	Description
31	1-0	RW1	0	INTENCLR[31-	Interrupt enable clear
				0]	

#### Table 93 INTTYPESET

Bit	Туре	Reset	Symbol	Description
31-0	RW1	0	INTTYPESET[31-0]	Interrupt type set

#### Table 94 INTTYPECLR

Bit	Type Reset	Symbol	Description
-----	------------	--------	-------------

31-0	RW	0	INTTYPECLR[31-0]	Interrupt type clear
	1			

#### **Table 95 INTPOLSET**

Bit	Туре	Reset	Symbol	Description
31-	RW1	0	INTPOLSET[31-0]	Polarity-level, edge IRQ configuration

#### Table 96 INTPOLCLR

Bit	Туре	Reset	Symbol	Description
31-0	RW1	0	INTPOLCLR[31-0]	Polarity-level, edge IRQ configuration [31-0]

#### **Table 97 INTSTATUS**

Bit	Туре	Reset	Symbol	Description
31-0	RWH	0	INTSTATUS[31-0]	Write one to clear interrupt request

# 15. Legal information

#### 15.1 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

### 15.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

**Right to make changes** — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the

customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

**Evaluation products** — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

### 15.3 Licenses

#### Purchase of NXP <xxx> components

<License statement text>

### 15.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> — owned by <Company name>

### 15.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

**User Manual** 

# 16. List of figures

Figure 1 QN902x MCU subsystem block diagram	3
Figure 2 QN902X System Address Space	6
Figure 3 DC-DC Mode	31
Figure 4 LDO mode	32
Figure 5 Power Mode State Machine	33
Figure 6 shows the block diagram of the ADC	35
Figure 7 Clock block diagram	51
Figure 8 PWM Block Diagram	66
Figure 9 RTC Block Diagram	70
Figure 10 Timer architecture	82
Figure 11 Compare Unit	83
Figure 12 Watchdog Operation Flow Diagram	103
Figure 13 Single GPIO pin diagram	109

# 17. List of tables

Table 1 Interrupt Sources	4
Table 2 Register Map	7
Table 3 CRSS (CLK_RST_SOFT_SET)	8
Table 4 CRSC (CLK_RST_SOFT_CLR)	9
Table 5 CMDCR (CLK_MUX_DIV_CTRL)	.10
Table 6 STCR (SYS_TICK_CTRL)	.11
Table 7 PMCR0 (PIN_MUX_CTRL0)	.12
Table 8 PMCR1 (PIN_MUX_CTRL1)	.12
Table 9 PMCR2 (PIN_MUX_CTRL2)	.12
Table 10 PDCR (PAD_DRV_CTRL)	.13
Table 11 PPCR0 (PAD_PULL_CTRL0)	.14
Table 12 PPCR1 (PAD_PULL_CTRL1)	.14
Table 13 RCS (RST_CAUSE_SRC)	.15
Table 14 IOWCR (IO_WAKEUP_CTRL)	.15
Table 15 BLESR (BLE_STATUS)	.16
Table 16 SMR (SYS_MODE_REG)	.17
Table 17 CHIP_ID	.17
Table 18 PGCR0 (POWER_GATING_CTRL0)	.17
Table 19 PGCR1 (POWER_GATING_CTRL1)	.19
Table 20 PGCR2 (POWER_GATING_CTRL2)	.21
Table 21 GCR (GAIN_CTRL)	.22
Table 22 IVREF_X32	
Table 23 XTAL_BUCK	.24
Table 24 LO1	.25
Table 25 ADCCR	.26
Table 26 Power Mode	.32
Table 27 Register Map	.39
Table 28 ADC0	.39
Table 29 ADC1	.40
Table 30 ADC2	.42
Table 31 SR	.43
Table 32 DATA	.43
Table 33 Pin summary	.52
Table 34 System Clock Register	.53
Table 35 I2C Register Map	.63
Table 36 CR	.63
Table 37 SR	.64
Table 38 TXD	.64
Table 39 RXD	.65
Table 40 INT	.65
Table 41 Register Map	
Table 42 CR	
Table 43 PSCL	.68

Table 44 PCP	68	
Table 45 SR	69	
Table 46 Timer Register Map	72	
Table 47 CR	72	
Table 48 SR	73	
Table 49 SEC	74	
Table 50 COEE		
Table 51 CALIB		
Table 52 CNT		
Table 53 SPI0/SPI1 Register Map		
Table 54 CR0		
Table 55 CR1		
Table 56 TXD		
Table 57 RXD		
Table 58 SR		
Table 59 Operation Modes		
Table 60 Timer Register Map		
Table 61 TCR		
Table 62 IFR		
Table 63 TOPR		
Table 64 ICER	-	
Table 65 CCR		
Table 66 CNT		
Table 67 Generated baud rate error when UARTCLK		
Table 68 Generated baud rate error when uartclk = $41$		
Table 69 Generated baud rate error when $uartclk = 21$		
Table 70 UART0/UART1 Register Map		
Table 70 OARTO/OARTT Register Map		
Table 71 TXD		
Table 72 KAD		
Table 73 BAOD		
Table 75 FLAG		
Table 76 Timer Register Map		
Table 77 Watchdog Load Register (WDOGLOAD)		
Table 78 Watchdog Value Register (WDOGVALUE)		
Table 79 Watchdog Control Register (WDOGCONTR		
Table 80 Watchdog Clear Interrupt Register (WDOGII		
Table 81 Watchdog Raw Interrupt Status Register (W		
Table 82 Watchdog Interrupt Status Register (WDOG		
Table 83 Watchdog Lock Register (WDOGLOCK)		
Table 84 Watchdog Integration Test Control Register		4.07
Table 85 Watchdog Integration Test Output Set Regis		107
Table 86 System Clock Register		
Table 87 DATA		
Table 88 DATAOUT		
Table 89 OUTENABLESET		
Table 90 OUTENABLECLR	119	

Table 91 INTENSET	119
Table 92 INTENCLR	119
Table 93 INTTYPESET	119
Table 94 INTTYPECLR	119
Table 95 INTPOLSET	120
Table 96 INTPOLCLR	120
Table 97 INTSTATUS	120

**User Manual** 

## 18. Contents

1.	Introduction	3
2.	MCU Subsystem	3
2.1	MCU	
2.1.1	Nested Vectored Interrupt Controller (NVIC)	4
2.1.2	Serial Wire Debug (SWD) interface	5
2.1.3	System Timer (SYSTICK)	5
2.2	System Bus	
2.3	Memory Organization	
2.4	Reset Management Unit (RMU)	6
2.5	Register Description	7
2.5.1	Register Map	
2.5.2	Register Description	8
3.	Power Supply and Power Management Unit	24
2.4	(PMU)	
3.1 3.2	Features	
3.∠ 3.3	Power Supply	
	Power Management Unit (PMU)	
4.	Analog-to-Digital Converter (ADC)	
4.1	Features	
4.2	Function Description	
4.2.1	ADC Input Stage	
4.2.2	ADC Reference Voltage	
4.2.3	ADC Clock Generation	
4.2.4	ADC Trigger	
4.2.5	Conversion Modes	
4.2.6	ADC Output	
4.2.7	ADC Power Control	
4.3	Register Description	
4.3.1	Register Map	
4.3.2	Register Description	
4.4	Software Document and Example Code	
5.	Comparator	
5.1	Features	
5.2	Function Description	
5.3	Comparator Operation	
5.3.1	Comparator Inputs	46

5.3.2	Comparator Outputs	47
5.3.3	Comparator Configuration	
5.4	Register Description	47
5.4.1	Register Description	47
6.	Clock Management Unit (CMU)	50
6.1	Clock generation	50
6.2	Clock sources	51
6.3	Clock description	52
6.4	Pin description	52
6.5	Basic configuration	52
6.5.1	System clock and AHB clock configuration	52
6.5.2	Configure APB clock	53
6.5.3	Configure BLE clock	53
6.5.4	Configure peripheral clocks	53
6.6	Register description	53
6.6.1	System Clock Register Description	53
6.6.1.1	CRSS	53
6.6.1.2	CRSC	55
6.6.1.3	CMDCR	56
6.6.1.4	STCR	58
7.	Inter-Integrated Circuit (I2C) interface	59
7.1	Features	59
7.2	Functional Description	59
7.2.1	7-bit slave address	59
7.2.2	R/nW bit	60
7.2.3	ACK/NACK	60
7.2.4	Data transfer	60
7.2.5	Stop or Repeated START signal	60
7.2.6	SCL clock generation in master mode	60
7.3	Master Mode Operation	60
7.3.1	Master-transmit	60
7.3.2	Master-receive	61
7.3.3	Slave-transmit	62
7.3.4	Slave-receive	62
7.4	Register Description	63
7.4.1	Register Map	63

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

#### © NXP Semiconductors N.V. 2018.

All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 05 November 2018 Document identifier: UM10996

#### 7.4.2 8. 8 1 8.2 8.3 Register Description......67 8.3.1 Register Map......67 8.3.2 Register Description......67 Real Time Clock (RTC) ......70 9. 9.1 Features ......70 9.2 Functional Description ......70 9.2.1 Clock Accuracy Compensation......71 9.2.2 Timing Compensation ......71 Input Capture Unit ......71 9.2.3 9.2.4 Programming Guide ......71 9.2.5 Interrupts ......71 9.3 Register Description......72 9.3.1 Register Map.....72 9.3.2 Register Description.....72 10. Serial Peripheral Interface (SPI0/SPI1) ......76 10.1 Features ......76 10.2 Functional Description ......76 10.2.1 Master Mode Operation.....76 10.2.2 Slave Mode Operation ......77 10.2.3 10.2.4 Clock generation......77 10.2.5 TX/RX Buffer ......78 Interrupt.....78 10.2.6 10.3 Register Description......78 10.3.1 Register Map......78 10.3.2 Register Description......79 11. 11.1 11.2 Functional Description ......82 11.2.1 Clock Sources ......83 11.2.2 11.2.3 Compare Unit......83 PWM Waveform Generation......83 11.2.4 11.3 Operation Modes ......84 11.3.1 Free Running mode......84 11.3.2 Input Capture Timer mode ......84

44.0.0		
11.3.3	Input Capture Event mode	
11.3.4	Input Capture Count mode85	
11.3.5	Interrupt	
11.4	Register Description	
11.4.1	Register Map	
11.4.2	Register Description	
12. U	ART90	
12.1	Features90	
12.2	Functional Description90	
12.2.1	Baud Rate Generation91	
12.2.2	Data Format93	
12.2.3	Hardware Flow Control94	
12.2.3.1	nRTS (UART Output)94	
12.2.3.2	nCTS (UART Input)94	
12.2.4	Interrupt95	
12.2.5	Programming flow95	
12.3	Register Description	
12.3.1	Register Map99	
12.3.2	Register Description	
13. W	/atch-Dog Timer (WDT)103	
13.1	Functional Description103	
13.2	Register Description	
13.2.1	Register Map	
13.2.2	Register Description104	
14. G	PIO	
14.1	Instruction	
14.2	Features108	
14.3	Functional Description108	
14.3.1	General purpose I/O108	
14.3.2	External interrupt/wakeup lines	
14.3.3	I/O port W/R control	
14.3.4	GPIO Operation as Alternate Function109	
14.3.5	Tool for configure GPIO110	
14.4	Register description112	
14.4.1	Pin Mux Registers Description112	
14.4.1.1	Pin_Mux_CTRL0112	
14.4.1.2	PIN MUX CTRL1112	
14.4.1.3	PIN MUX CTRL2	
14.4.1.4	PAD DRV CTRL	
14.4.1.5	PAD_PULL_CTRL0115	
	— <b>—</b>	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

#### © NXP Semiconductors N.V. 2018.

All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 05 November 2018 Document identifier: UM10996

14.4.1.6	PAD_PULL_CTRL1	116
14.4.1.7	IO_WAKEUP_CTRL	116
14.4.2	GPIO Register Description	117
15.	Legal information	121
15.1	Definitions	121
15.2	Disclaimers	121
15.3	Licenses	121
15.4	Patents	121
15.5	Trademarks	121
16.	List of figures	122
17.	List of tables	123
18.	Contents	126

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

#### © NXP Semiconductors N.V. 2018.

All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 05 November 2018 Document identifier: UM10996