
This report applies to mask 3N09P for these products:
• MCIMX7S
• MCIMX7D

Table 1. Errata and Information Summary

Erratum ID Erratum Title

e3774 AIPS: Unaligned access causes abort on writes to the internal registers

e8305 ARM/MP: 804069-C, Exception mask bits are cleared when an exception is taken in Hyp mode.

e8304 ARM/MP: 805420-C, PMU event counter 0x14 does not increment correctly.

e8303 ARM/MP: 809719-C, PMU events 0x07, 0x0C, and 0x0E do not increment correctly.

e8302 ARM/MP: 814220-B, Cache maintenance by set/way operations can execute out of order.

e10133 ARM: Boot failure after A7 enters into low-power idle mode

e9513 CCM: Violate bit in misc register will be set unexpectedly when writing to debug or target interface.

e9515 CCM; Domain cannot wake up if clock source control is set to 0

e6939 Core: Interrupted loads to SP can cause erroneous behavior

e6940 Core: VDIV or VSQRT instructions might not complete correctly when very short ISRs are used

e4574 CSU: Possibility of incorrect security privileges for memory accesses

e9516 DDR-PHY: Intermittent issue where DDR becomes unstable due to DDR MDLL unlocking.

e9606 ECSPI: In master mode, burst lengths of 32n+1 will transmit incorrect data

e9165 eCSPI: TXFIFO empty flag glitch can cause the current FIFO transfer to be sent twice

e5829 FlexCAN: FlexCAN does not transmit a message that is enabled to be transmitted in a specific
moment during the arbitration process.

e7805 I2C: When the I2C clock speed is configured for 400 kHz, the SCL low period violates the I2C spec of
1.3 uS min

e11166 OCRAM: The first 4K of OCRAM (0x910000 - 0x910fff) is not available during boot time

e9514 PCIe address space is not cacheable from A7.

e9541 PXP: CSC2 does not perform RGB to YCbCr and RGB to YUV conversions correctly

e8244 PXP: pxp_compress step1 FIFO full may lead to data error

e8151 PXP: Rotation Engine alignment and operation combination limitations

Table continues on the next page...

NXP Semiconductors IMX7DS_3N09P

Mask Set Errata Rev. 1.1, 04/2018

Mask Set Errata for Mask 3N09P

Table 1. Errata and Information Summary (continued)

Erratum ID Erratum Title

e8153 PXP: Rotation1 Engine format support limitation

e8335 PXP: store engine is writing data when working in block mode and block size=16

e10574 Watchdog: A watchdog timeout or software trigger will not reset the SOC

Table 2. Revision History

Revision Changes

0, 11/2017 The following errata were revised.

• e11166

1.0, 03/2018 The following errata were added.

• e10574

The following errata were revised.

• e7805

1.1, 04/2018 The following errata were revised.

• e10574

e3774: AIPS: Unaligned access causes abort on writes to the internal registers

Description: Unaligned access to AIPS can be driven high by SAHARA, DAP, and FEC. If they access the
AIPS internal registers during an unaligned access, an ABORT occurs.

Workaround: Make only aligned accesses to the AIPS internal registers.

e8305: ARM/MP: 804069-C, Exception mask bits are cleared when an exception is
taken in Hyp mode.

Description: The Cortex-A7 MPCore processor implements the ARM Virtualization Extensions and the ARM
Security Extensions. Exceptions can be routed to Monitor mode by setting SCR.{EA, FIQ, IRQ}
to 1. Exceptions can be masked by setting corresponding bit CPSR.{A, I, F} to 1.

The ARMv7-A architecture states that an exception taken in Hyp mode does not change the
value of the mask bits for exceptions routed to Monitor mode. However, because of this
erratum, the corresponding mask bits will be cleared to 0.

Workaround: There is no workaround for this erratum.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

2 NXP Semiconductors

e8304: ARM/MP: 805420-C, PMU event counter 0x14 does not increment correctly.

Description: The Cortex-A7 MPCore processor implements version 2 of the Performance Monitor Unit
architecture (PMUv2). The PMU can gather statistics on the operation of the processor and
memory system during runtime. This event information can be used when debugging or
profiling code. When a PMU counter is programmed to count L1 instruction cache accesses
(event 0x14), the counter should increment on all L1 instruction cache accesses. Because of
this erratum, the counter increments on cache hits but not on cache misses.

All configurations affected.

Workaround: To obtain a better approximation for the number of L1 instruction cache accesses, enable a
second PMU counter and program it to count instruction fetches that cause linefills (event
0x01). Add the value returned by this counter to the value returned by the L1 instruction
access counter (event 0x14). The result of the addition is a better indication of the number of
L1 instruction cache accesses.

e8303: ARM/MP: 809719-C, PMU events 0x07, 0x0C, and 0x0E do not increment
correctly.

Description: The Cortex-A7 MPCore processor implements version 2 of the Performance Monitor Unit
architecture (PMUv2). The PMU can gather statistics on the operation of the processor and
memory system during runtime. This event information can be used when debugging or
profiling code.

The PMU can be programmed to count architecturally executed stores (event 0x07), software
changes of the PC (event 0x0C), and procedure returns (event 0x0E). However, because of
this erratum, these events do not fully adhere to the descriptions in the PMUv2 architecture.

All configurations affected.

Workaround: There is no workaround for this erratum.

e8302: ARM/MP: 814220-B, Cache maintenance by set/way operations can execute out
of order.

Description: The v7 ARM ARM states that all cache and branch predictor maintenance operations that do
not specify an address execute, relative to each other, in program order. However, because of
this erratum, an L2 set/way cache maintenance operation can overtake an L1 set/way cache
maintenance operation.

To be affected by this erratum, the processor must be implemented with an L2 cache.

Workaround: Correct ordering between set/way cache maintenance operations can be forced by executing a
DSB before changing cache levels.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

NXP Semiconductors 3

e10133: ARM: Boot failure after A7 enters into low-power idle mode

Description: Boot failure may happen after the A7 enters into low-power idle mode (no other blocks are
powered down except the A7 CPU). When the system resumes from low-power idle, A7 CPU0
runs into exception while A7 CPU1 runs successfully. Such random boot failure happens when
the wakeup INT arrives during A7 power down sequence.

Workaround: If both CPU0/CPU1 are IDLE, the last IDLE CPU should disable GIC first, then
REG_BYPASS_COUNTER is used to mask wakeup INT, and then execute “wfi” is used to
bring the system into power down processing safely. The counter must be enabled as close to
the “wfi” state as possible. The following equation can be used to determine the RBC counter
value: RBC_COUNT * (1/32K RTC frequency) >= (46 + PDNSCR_SW + PDNSCR_SW2ISO)
* (1/IPG_CLK frequency).

e9513: CCM: Violate bit in misc register will be set unexpectedly when writing to
debug or target interface.

Description: When writing to debug interface or target interface, normal violate bit in misc register will be set
unexpectedly.

Violate bit is located at bit 8 of

0x30388010~0x3038801C,

0x30388110~0x3038811C,

0x30388210~0x3038821C,

0x30388310~0x3038831C,

...

0x3038BE10~0x3038BE1C.

Workaround: Clear this bit before accessing normal interface.

e9515: CCM; Domain cannot wake up if clock source control is set to 0

Description: If clock source control is set to 0 in a domain, the domain cannot wake up. For unused
domains, the source setting can be set to all 0 to save power. For in-use domains, source
controls can only be set to 1, 2, or 3, but if any are set to 0, the domain will not wake up.

Related registers are CCM_PLL_CTRLn.

Workaround: Ensure for all domains in use, the clock source control register is set to something other than
0.

e6939: Core: Interrupted loads to SP can cause erroneous behavior

Description: Arm Errata 752770: Interrupted loads to SP can cause erroneous behavior

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

4 NXP Semiconductors

This issue is more prevalent for user code written to manipulate the stack. Most compilers will
not be affected by this, but please confirm this with your compiler vendor. MQX™ and
FreeRTOS™ are not affected by this issue.

Affects: Cortex-M4, Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/
R13), erroneous behavior can occur. In all cases, returning from the interrupt will result in the
load instruction being executed an additional time. For all instructions performing an update to
the base register, the base register will be erroneously updated on each execution, resulting in
the stack-pointer being loaded from an incorrect memory location.

The affected instructions that can result in the load transaction being repeated are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

3) LDR SP,[Rn,#imm]

4) LDR SP,[Rn]

5) LDR SP,[Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect
memory address are:

1) LDR SP,[Rn],#imm

2) LDR SP,[Rn,#imm]!

Conditions:

1) An LDR is executed, with SP/R13 as the destination.

2) The address for the LDR is successfully issued to the memory system.

3) An interrupt is taken before the data has been returned and written to the stack-pointer.

Implications:

Unless the load is being performed to Device or Strongly-Ordered memory, there should be no
implications from the repetition of the load. In the unlikely event that the load is being
performed to Device or Strongly-Ordered memory, the repeated read can result in the final
stack-pointer value being different than had only a single load been performed.

Interruption of the two write-back forms of the instruction can result in both the base register
value and final stack-pointer value being incorrect. This can result in apparent stack corruption
and subsequent unintended modification of memory.

Workaround: Most compilers are not affected by this, so a workaround is not required.

However, for hand-written assembly code to manipulate the stack, both issues may be worked
around by replacing the direct load to the stack-pointer, with an intermediate load to a general-
purpose register followed by a move to the stack-pointer.

If repeated reads are acceptable, then the base-update issue may be worked around by
performing the stack pointer load without the base increment followed by a subsequent ADD or
SUB instruction to perform the appropriate update to the base register.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

NXP Semiconductors 5

e6940: Core: VDIV or VSQRT instructions might not complete correctly when very
short ISRs are used

Description: Arm Errata 709718: VDIV or VSQRT instructions might not complete correctly when very short
ISRs are used

Affects: Cortex-M4F

Fault Type: Programmer Category B

Fault Status: Present in: r0p0, r0p1 Open.

On Cortex-M4 with FPU, the VDIV and VSQRT instructions take 14 cycles to execute. When
an interrupt is taken a VDIV or VSQRT instruction is not terminated, and completes its
execution while the interrupt stacking occurs. If lazy context save of floating point state is
enabled then the automatic stacking of the floating point context does not occur until a floating
point instruction is executed inside the interrupt service routine.

Lazy context save is enabled by default. When it is enabled, the minimum time for the first
instruction in the interrupt service routine to start executing is 12 cycles. In certain timing
conditions, and if there is only one or two instructions inside the interrupt service routine, then
the VDIV or VSQRT instruction might not write its result to the register bank or to the FPSCR.

Workaround: A workaround is only required if the floating point unit is present and enabled. A workaround is
not required if the memory system inserts one or more wait states to every stack transaction.

There are two workarounds:

1) Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

2) Ensure that every interrupt service routine contains more than 2 instructions in addition to
the exception return instruction.

e4574: CSU: Possibility of incorrect security privileges for memory accesses

Description: The CSU configuration signals are not synchronized to the OCRAM, OCRAM L2 cache, and
WEIM so modifications of the security protection privileges to these memory locations during
memory access may have unintended bus privileges.

Workaround: Program the CSU during boot prior to runtime memory access.

e9516: DDR-PHY: Intermittent issue where DDR becomes unstable due to DDR MDLL
unlocking.

Description: Intermittent issue where DDR becomes unstable due to DDR MDLL unlocking.

Workaround: Set the ctrl_ref in register DDR_PHY_MDLL_CON0 [4:1] to 4’b1111 to disable the de-asserting
of dfi_init_complete until rst_n is asserted.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

6 NXP Semiconductors

e9606: ECSPI: In master mode, burst lengths of 32n+1 will transmit incorrect data

Description: When the ECSPI is configured in master mode and the burst length is configured to a value
32n+1 (where n=0,1, 2,…), the ECSPI will transmit the portions of the first word in the FIFO
twice.

For example, if the transmit FIFO is loaded with:

[0] 0x00000001

[1] 0xAAAAAAAA

And the burst length is configured for 33 bits (ECSPIx_CONREG[BURST_LENGTH]=0x020),
the ECSPI will transmit the first bit of word [0] followed by the entire word [0], then transmit the
data as expected.

The transmitted sequence in this example will be:

[0] 0x00000001

[1] 0x00000001

[2] 0x00000000

[3] 0xAAAAAAAA

Workaround: Do not use burst lengths of 32n+1 (where n=0,1, 2,…).

e9165: eCSPI: TXFIFO empty flag glitch can cause the current FIFO transfer to be sent
twice

Description: When using DMA to transfer data to the TXFIFO, if the data is written to the TXFIFO during an
active eCSPI data exchange, this can cause a glitch in the TXFIFO empty signal, resulting in
the TXFIFO read pointer (TXCNT) not updating correctly, which in turn results in the current
transfer getting resent a second time.

Workaround: This errata is only seen when the SMC (Start Mode Control) bit is set. A modified SDMA script
with TX_THRESHOLD = 0 and using only the XCH (SPI Exchange) bit to initiate transfers
prevents this errata from occurring. There is an associated performance impact with this
workaround. Testing transfers to a SPI-NOR flash showed approximately a 5% drop in write
data rates and a 25% drop in read data rates.

e5829: FlexCAN: FlexCAN does not transmit a message that is enabled to be
transmitted in a specific moment during the arbitration process.

Description: FlexCAN does not transmit a message that is enabled to be transmitted in a specific moment
during the arbitration process. The following conditions are necessary for the issue to occur:

• Only one message buffer is configured to be transmitted

• The write which enables the message buffer to be transmitted (write on Control/Status word)
happens during a specific clock during the arbitration process.

• After this arbitration process occurs, the bus goes to the Idle state and no new message is
received on the bus.

For example:

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

NXP Semiconductors 7

1. Message buffer 13 is deactivated on RxIntermission (write 0x0 to the CODE field from the
Control/Status word) [First write to CODE]

2. Reconfigure the ID and data fields

3. Enable the message buffer 13 to be transmitted on BusIdle (write 0xC on CODE field)
[Second write to CODE]

4. CAN bus keeps in Idle state

5. No write on the Control/Status from any message buffer happens.

During the second write to CODE (step 3), the write must happen one clock before the current
message buffer 13 to be scanned by arbitration process. In this case, it does not detect the
new code (0xC) and no new arbitration is scheduled.

The problem can be detected only if the message traffic ceases and the CAN bus enters into
Idle state after the described sequence of events.

There is no issue if any of the conditions below holds:

• Any message buffer (either Tx or Rx) is reconfigured (by writing to its CS field) just after the
Intermission field.

• There are other configured message buffers to be transmitted

• A new incoming message sent by any external node starts just after the Intermission field.

Workaround: To transmit a CAN frame, the CPU must prepare a message buffer for transmission by
executing the following standard 5-step procedure:

1. Check if the respective interrupt bit is set and clear it.

2. If the message buffer is active (transmission pending), write the ABORT code (0b1001) to
the CODE field of the Control/Status word to request an abortion of the transmission. Wait for
the corresponding IFLAG to be asserted by polling the IFLAG register or by the interrupt
request if enabled by the respective IMASK. Then read back the CODE field to check if the
transmission was aborted or transmitted. If backwards compatibility is desired (MCR[AEN] bit
negated), just write the INACTIVE code (0b1000) to the CODE field to inactivate the message
buffer, but then the pending frame may be transmitted without notification.

3. Write the ID word.

4. Write the data bytes.

5. Write the DLC, Control and CODE fields of the Control/Status word to activate the message
buffer.

6. The workaround consists of executing two extra steps:

7. Reserve the first valid mailbox as an inactive mailbox (CODE=0b1000). If RX FIFO is
disabled, this mailbox must be message buffer 0. Otherwise, the first valid mailbox can be
found using the “RX FIFO filters” table in the FlexCAN chapter of the chip reference manual.

8. Write twice INACTIVE code (0b1000) into the first valid mailbox.

NOTE

The first mailbox cannot be used for reception or transmission process.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

8 NXP Semiconductors

e7805: I2C: When the I2C clock speed is configured for 400 kHz, the SCL low period
violates the I2C spec of 1.3 uS min

Description: When the I2C module is programmed to operate at the maximum clock speed of 400 kHz (as
defined by the I2C spec), the SCL clock low period violates the I2C spec of 1.3 uS min. The
user must reduce the clock speed to obtain the SCL low time to meet the 1.3us I2C minimum
required. This behavior means the SoC is not compliant to the I2C spec at 400kHz.

Workaround: To meet the clock low period requirement in fast speed mode, SCL must be configured to
384KHz or less.

e11166: OCRAM: The first 4K of OCRAM (0x910000 - 0x910fff) is not available during
boot time

Description: The first 4K of OCRAM (0x910000 – 0x910fff) is not available during boot time which effects
plug-ins and custom boot images.Using this space may cause image corruption during boot
time. At time of boot failure, the system may enter into serial download mode.

Workaround: Users must set the boot or plugin image start address greater or equal to 0x911000 (if the boot
image or plug-in is running in OCRAM). Alternatively, users can use a boot/plugin image load
address in the external DDR memory instead of the internal OCRAM.

e9514: PCIe address space is not cacheable from A7.

Description: PCIe address doesn’t support cacheable access from ARM.

When enable cach accesses PCIe axi address, ARM A7 issues wrap burst with 64 bytes un-
aligned access (shift 0x10). PCIe axi slave takes it as incr burst (it doesn’t support wrap on axi
bridge), causing the return data and address not to match.

Workaround: None

e9541: PXP: CSC2 does not perform RGB to YCbCr and RGB to YUV conversions
correctly

Description: When performing RGB-to-YUV conversions, CSC2 can only output a result from 0 to 255 (8
bits), which does not meet the YUV range requirements (9 bits required) and the parameters
d0/d1/d2 cannot meet the YCbCr requirements (17 bits required).

Workaround: Perform RGB-to-YUV or RGB-to-YCbCr conversions outside the PXP (either through a GPU,
IPU, or CPU depending on the resources available on the SoC).

e8244: PXP: pxp_compress step1 FIFO full may lead to data error

Description: Due to a pxp compression bug, when pxp_compress step1 FIFO is full there is a Read source
data channel error.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

NXP Semiconductors 9

Workaround: Set OT=1 and check the flag output from: pxp_compress module, flag fifo_full, and
error_prone.

e8151: PXP: Rotation Engine alignment and operation combination limitations

Description: Rotation Engine Position 0:

When processing ‘ps’ and ‘as’ buffers that are unaligned (buffers are not aligned to block
boundaries) then a rotation operation that is combined with a flip, decimation, or scaling
operation will not execute correctly. Rotation operations must be done in separate passes.
These combination operations execute correctly for aligned buffers.

Rotation Engine Position 1:

Unaligned buffer rotation does not execute correctly. Rotation operations combined with flip,
scaling, or decimation do not execute correctly. Only simple aligned rotation is supported.

Workaround: Rotation Engine Position 0:

When processing ‘ps’ and ‘as’ buffers that are unaligned (buffers are not aligned to block
boundaries) then a rotation operation that is combined with a flip, decimation, or scaling
operation will not execute correctly. Rotation operations must be done in separate passes.
These combination operations execute correctly for aligned buffers.

Rotation Engine Position 1:

Unaligned buffer rotation does not execute correctly. Rotation operations combined with flip,
scaling, or decimation do not execute correctly. Only simple aligned rotation is supported.

e8153: PXP: Rotation1 Engine format support limitation

Description: Rotation of data in YUV420 format does not work correctly.

Workaround: Do not use rotation of data in YUV420 format

e8335: PXP: store engine is writing data when working in block mode and block
size=16

Description: The PXP store engine writes data when working in block mode and the block size=16.

As a result, stale data overwrites valid data and the valid data becomes corrupted.

Workaround: Restrict block size to size=8 when in block mode.

e10574: Watchdog: A watchdog timeout or software trigger will not reset the SOC

Description: When the watchdog reset is asserted by software or a timeout, the chip reset sequence is
started but does not complete.

Workaround: Option 1: Hardware implementation of power-on-reset (POR)

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

10 NXP Semiconductors

Use the pin muxing capability to route the desired WDOG_B signal to an external signal. That
external signal must then be connected at the board level to an active-low power-on control
(PWRON) of the PMIC. When WDOG_B is driven low (by a watchdog timeout or by software),
this will cause the Power Management IC (PMIC) to cycle power causing a system-level
power-on-reset.

Option 2: Use SRC_A7RCR0[A7_CORE_POR_RESET0] to reset the ARM A7.

This workaround works well for DDR3/DDR3L, but does not work with LPDDR2. LPDDR2
access may fail after the ARM reboots because the LPDDR2 has no dedicated reset pin as
with DDR3/DDR3L.

Option 3: Use the SNVS LPCR register to turn off the system power

Set the SNVS_LPCR[TOP] bit through software. Asserting this bit causes a signal to be sent to
the PMIC to turn off the system power. This bit will clear after power is off. This bit is only valid
when the Dumb PMIC mode is enabled (SNVS_LPCR[DP_EN]=1).

This option will work even if the WDOG_B is not connected to the PMIC power-on request
(PWRON). This option will work with either DDR3 or LPDDR2 because the board-level power
is maintained.

Mask Set Errata for Mask 3N09P, Rev. 1.1, 04/2018

NXP Semiconductors 11

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. “Typical” parameters

that may be provided in NXP data sheets and/or specifications can and do vary in

different applications, and actual performance may vary over time. All operating

parameters, including “typicals” must be validated for each customer application by

customer's technical experts. NXP does not convey any license under its patent

rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Document Number: IMX7DS_3N09P
Rev. 1.1
04/2018

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All

other product or service names are the property of their respective owners.

Arm, Arm Powered, and Cortex are registered trademarks of Arm Limited (or

its subsidiaries) in the EU and/or elsewhere. Arm7 and NEON are

trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.

All rights reserved.

© 2017-2018 NXP B.V.

http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com
http://www.nxp.com/support

	Mask Set Errata for Mask 3N09P
	Known Errata
	e3774
	e8305
	e8304
	e8303
	e8302
	e10133
	e9513
	e9515
	e6939
	e6940
	e4574
	e9516
	e9606
	e9165
	e5829
	e7805
	e11166
	e9514
	e9541
	e8244
	e8151
	e8153
	e8335
	e10574

	Contact Information

